核技术利用建设项目

新疆八钢金属制品有限公司金属制品公司新增锌铝镁纵剪线及螺旋焊管 3、7线搬迁项目 X 射线探伤工作场所环境影响报告表

新疆八钢金属制品有限公司 2025年7月 生态环境部监制

目录

表 1 项目基本情况	1 -
表 2 放射源	17 -
表 3 非密封放射性物质	17 -
表 4 射线装置	18 -
表 5 废弃物(重点是放射性废弃物)	19 -
表 6 评价依据	20 -
表 7 保护目标与评价标准	22 -
表 8 环境质量和辐射现状	28 -
表 9 项目工程分析与源项	32 -
表 10 辐射安全与防护	36 -
表 11 环境影响分析	43 -
表 12 辐射安全管理	61 -
表 13 结论与建议	72 -
表 14 审批	75 -

表1项目基本情况

油油面口 复新	新疆八钢金属	新疆八钢金属制品有限公司金属制品公司新增锌铝镁纵剪线及螺旋焊							
建设项目名称		管 3、	7线搬迁	E项目 X :	射线	采伤工作场所			
建设单位		新疆八钢金属制品有限公司							
法人代表		联邦	系人			联系电话			
注册地址		新疆维	吾尔自治	区乌鲁木	大齐市	5头屯河工业园	<u>.</u>		
项目建设地点	新疆维吾尔自	治区乌		万头屯河[一限公司灯			新疆八钢金属		
立项审批部门		/		批准文	:号		/		
建设项目总投资 (万元)	1391.2	项目环保投资 17 (万元)				受比例(环保 资/总投资)	1.3%		
项目性质	☑新	☑新建□改建□扩建□				占地面积 (m²)	252.857		
				肖售		I类□II类□III类	だ□IV类□V类		
	放射源	放射源			□I类	□I类(医疗使用)□II类□III类□I 类□V类			
应			<u></u>	□生产		□制备 PET 用放射性药物			
用	非密封放射性	生物质	□钅	肖售	1				
类			口包		□乙□丙				
型				上产	□II类□III类				
	射线装置	置	□€	肖售		□II类□Ì	III类		
			☑ 1	☑使用		☑II类□III类			
	其他					/			

1.1 项目概述

1.1.1 建设单位简介

新疆八钢金属制品有限公司成立于 2003 年 9 月 24 日,总部位于新疆乌鲁木齐市头屯河区工业园,是新疆八一钢铁股份有限公司的全资子公司,隶属于中国宝武钢铁集团。公司法定代表人为 ,主要从事汽车配件、农机配件、金属制品、钢管、钢材加工、进出口经营等业务。截至 2023 年,公司员工数量为 126 人,2020 年营业收入达 9.72 亿元。公司迁移 2 台 X 射线探伤机,目前已取得辐射安全与防护培训合格证书的有 4 人。

本项目建设地点位于新疆维吾尔自治区乌鲁木齐市头屯河区北站公路 1366 号新疆八钢金属制品有限公司焊一车间内,项目地理位置坐标:东经 87°22′16.456″,北纬43°52′38.453″;地理位置图详见附图一。

1.1.2 项目建设规模

此项目搬迁改造的为 2 台工业用 X 射线探伤机及原有的焊管生产线(本报告对焊管生产线不做环境影响评价)。新疆八钢金属制品有限公司优化布局腾出租赁厂房,进而达到集约化管理提高劳动生产率降低运行成本的目的,将金圆北站原有的焊管生产线进行拆除、搬迁。此项目涉及的搬迁改造产线为: 1#、2#护栏板成型机组,焊管 140 机组,焊管 76(1)机组,焊管 76(2)机组和金圆北站 3#φ630 螺旋焊管机组及 2 台工业用 X 射线探伤机。此项目涉及的搬迁改造产线及 2 台工业用 X 射线探伤机迁移后存放场所位于新疆维吾尔自治区乌鲁木齐市头屯河区北站公路 1366 号新疆八钢金属制品有限公司焊一车间内。

本项目计划迁移的 2 台 X 射线探伤设备用于工业探伤,涉及探伤工作室等室内建设场 所均由新疆八钢金属制品有限公司焊一车间改造而成,均为 1 层建筑。探伤机储存于探伤 工作室中。设备相关参数见表 4。具体项目组成及主要环境问题见表 1-1。

		可能产生的环境问题								
		建设内容及规模	施工期	营运期						
主体工程	探伤工	迁移 2 台定向 X 射线探伤机型号为	/	X射线、						
土净土住	作室	RTIS-225/HP,属II类射线装置。	/	臭氧						
辅助工程	本项目不	设置洗片室、评片室、暗室,底片只留存 电子版	/	/						
公用工程		依托本公司其他公用设施	/	/						
办公及生 活设施	依托本名	公司现有办公及生活设施(详见附件二)	/	/						

表 1-1 本项目建设规模及主要环境问题

1.1.3 评价目的、任务的由来

此项目搬迁改造的为 2 台工业用 X 射线探伤机及原有的焊管生产线 (本报告对焊管生产线不做环境影响评价)。新疆八钢金属制品有限公司优化布局腾出租赁厂房,进而达到集约化管理提高劳动生产率降低运行成本的目的,将金圆北站原有的焊管生产线进行拆除、搬迁。此项目涉及的搬迁改造产线为: 1#、2#护栏板成型机组,焊管 140 机组,焊管76(1)机组,焊管76(2)机组和金圆北站 3#φ630 螺旋焊管机组及 2 台工业用 X 射线探伤机。此项目涉及的搬迁改造产线及 2 台工业用 X 射线探伤机迁移后存放场所位于新疆维吾尔自治区乌鲁木齐市头屯河区北站公路 1366 号新疆八钢金属制品有限公司焊一车间内。

本项目建设内容为: 使用 2 台 X 射线探伤机, 属于II类射线装置。

核技术应用项目会对周围环境带来一定程度的电离辐射影响。因此,在合理利用核技术的同时,必须重视其对环境的影响。根据《中华人民共和国环境保护法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》、《放射性同位素与射线装置安全和防护条例》(国务院第449号令,国务院第709号令修改)和《放射性同位素与射线装置安全许可管理办法》(生态环境部部令第7号(5),2019年7月11日发布,2019年8月22日起实施)的规定和要求,本项目在建设前须进行环境影响评价。

本项目迁移的 2 台 X 射线探伤机属于 II 类射线装置。根据《建设项目环境影响评价分类管理名录》(2021 年版),"五十五、核与辐射—172、核技术利用建设项目—制备 PET 用放射性药物的;医疗使用 I 类放射源的;使用 II 类、III 类放射源的;生产、使用 II 类射线装置的;乙、丙级非密封放射性物质工作场所(医疗机构使用植入治疗用放射性粒子源的除外);在野外进行放射性同位素试验的;以上项目的改、扩建(不含在已许可场所增加不超出已许可活动种类和不高于已许可范围等级的核素或射线装置的)",本项目属于使用 II 类射线装置,应编制环境影响报告表,并报相应生态环境主管部门审查批准。

新疆八钢金属制品有限公司于 2025 年 7 月委托新疆朗新天环保科技有限公司进行本项目环境影响报告表的编制工作(见附件 1)。评价单位通过对本项目进行资料收集、现场勘查,在查阅设计资料的基础上,从辐射防护的角度评价项目的可行性,并结合本项目的辐射危害特征,按照《辐射环境保护管理导则核技术利用建设项目环境影响评价文件的内容和格式》(HJ10.1-2016)的要求,编制了本环境影响报告表。

项目批复后,建设单位应按照《放射性同位素与射线装置安全许可管理办法》的相关 要求,向生态环境主管部门申领相应的辐射安全许可证。

1.2 项目周边保护目标及选址情况

1.2.1 周边环境保护目标

工业 X 射线探伤机存放场所位于新疆维吾尔自治区乌鲁木齐市头屯河区北站公路 1366 号新疆八钢金属制品有限公司焊一车间。项目探伤机工作室为工业用地及在建厂房,周围无医院、文物保护、风景名胜区等环境敏感目标,外环境相对简单,不存在明显的环境制约因素。地理位置见附图 1,周围环境关系图见附图 2,周围环境照片见附图 3。

本项目拟迁移使用 2 台 X 射线探伤机,建设单位在焊一车间设置探伤机工作室,用于探伤机的储存及工作,并由专人管理,对设备进出库进行登记。储存场所采取安装摄像头、安装防盗门及设置双人双锁、专人看管等安全措施; X 射线探伤机存放期间不开机使用,不会产生 X 射线,不会对办公室人员及周边环境产生影响; 设备储存选址合理。本项目的污染因子为探伤机在进行探伤无损检测时产生的 X 射线。本项目不设置洗片室、评片室、暗室,底片只留存电子版。由此可见,本项目电离辐射环境保护目标主要为设备的操作人员(工作人员)及作业场所周边活动人员(公众)。

1.2.2 项目选址合理性分析

(1) 作业现场的选择

本项目探伤作业现场位于焊一车间,人流量很少,项目运营过程产生的电离辐射,经采取一定的防护措施后不会对周围环境与公众造成危害。

(2)设备存放场所

本项目探伤机工作室、在新疆八钢金属制品有限公司焊一车间内。

本项目不设置洗片室、评片室、暗室、底片只留存电子版。

未开展探伤工作期间,X射线探伤机存放于探伤工作室内。探伤工作室周围 50 米范围内,无居民区、学校等敏感建筑。因此选址从环境的角度是合理的。

1.3 产业政策符合性分析

本项目属于国家发展和改革委员会《产业结构调整指导目录(2024年本)》中鼓励类项目("六、核能中的"核技术应用:同位素、加速器及辐照应用技术开发,辐射防护技术开发与监测设备制造"),本工程作业场所为焊一车间,不涉及自然保护区、风景名胜区、森林公园、饮用水水源保护区等生态敏感区域,项目建设符合国家产业政策、环保政策和相关规划,因此认为该项目选址合理,符合相关产业政策。

1.4 原核技术利用许可和落实情况

本项目为迁移项目,公司于 2003 年成立,期间开展辐射相关的工作,取得《辐射安全许可证》,证书编号为新环辐证[G0306],辐射安全许可证有效期至 2026 年 4 月 5 日,种类和范围为使用 II 类射线装置。前期申报辐射安全许可证见图 1.4-1。

图1.4-1 项目前期辐射安全许可证

1.5、实践的正当性

按照《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中关于辐射防护实践的正当性要求,对于核技术利用项目实践活动,只有在考虑了社会、经济和其他相关因素,其对社会或个人所带来的利益足以弥补其可能引起的危害时,该实践才是正当的。

建设单位迁移使用的 2 台 X 射线机(最大管电压均为 225kV),利用 X 射线数字成像技术,对管道及设备进行可视化无损检测,在不拆解管道及设备的情况下实现直观、可靠、准确的评价,为相关设备设施的安全运行提供有力的保障。设备在使用过程中产生电离辐射,对周围环境产生一定影响,但在使用过程中采取了必要的辐射安全防护和管理措施减少本项目的辐射影响,本项目的辐射影响在相应的标准范围内,该项目给社会带来的利益远大于其可能引起的辐射影响。因此,本项目的建设符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中辐射防护"实践正当性"的要求。

1.6 工作人员及工作制度

根据新疆八钢金属制品有限公司提供的资料,本项目设置 4名辐射工作员,公司实行轮班工作制,年工作 300 天。本项目现场作业时,2~3 人一组,分为 2 组,探伤作业人员在探伤工作室开展无损检测工作。每组工作人员平均每年最多拍片 7500 张,每张片平均曝光时间约 90s,每组工作人员年曝光最大时间为 187.5h。

1.7《新疆维吾尔自治区生态环境分区管控动态更新成果》(新环环评发〔2024〕157 号)》 符合性分析

根据《新疆维吾尔自治区生态环境分区管控动态更新成果》(新环环评发〔2024〕157号〕》,将本项目与生态保护红线、环境质量底线、资源利用上线和生态环境准入清单相关要求对比分析,详见表 1-2。

表 1-2 项目与新政发(2021) 18 号相符性分析

Ī		生态环境分区管控方案要求	项目情况	符合性
ſ		〔A1.1-1〕禁止新建、扩建《产业结构调整指导目录(2024	本项目属于核技术利用	
١		年本)》中淘汰类项目。禁止引入《市场准入负面清单(2022	建设项目,属于《产业	
ı		年版)》禁止准入类事项。	结构调整指导目录	
ı	空	〔A1.1-2〕禁止建设不符合国家和自治区环境保护标准的项	(2024年本)》(国家发	
ı	工间	目。	展改革委 2024 年第 29	
ı	布	〔A1.1-3〕禁止在饮用水水源保护区、风景名胜区、自然保	号令):鼓励类。本项	
ı	制局	护区的核心区和缓冲区、城镇居民区、文化教育科学研究	目位于新疆维吾尔自治	符合
ı	户 约	区等人口集中区域以及法律法规规定的其他禁止养殖区域	区乌鲁木齐市头屯河区	
ı	東	建设畜禽养殖场、养殖小区。	北站公路 1366 号新疆	
ı	米	〔A1.1-4〕禁止在水源涵养区、地下水源、饮用水源、自然	八钢金属制品有限公司	
١		保护区、风景名胜区、森林公园、重要湿地及人群密集区	焊一车间内,不新增占	
١		等生态敏感区域内进行煤炭、石油、天然气开发。	地,项目用地性质为工	
.		〔A1.1-5〕禁止下列破坏湿地及其生态功能的行为:	业用地,拟建项目在园	

- (一)开(围)垦、排干自然湿地,永久性截断自然湿地 水源:
- (二)擅自填埋自然湿地,擅自采砂、采矿、取土;
- (三)排放不符合水污染物排放标准的工业废水、生活污水及其他污染湿地的废水、污水,倾倒、堆放、丢弃、遗撒固体废物;
- (四)过度放牧或者滥采野生植物,过度捕捞或者灭绝式捕捞,过度施肥、投药、投放饵料等污染湿地的种植养殖行为;
- (五) 其他破坏湿地及其生态功能的行为。
- (A1.1-6)禁止在自治区行政区域内引进能(水)耗不符合相关国家标准中准入值要求且污染物排放和环境风险防控不符合国家(地方)标准及有关产业准入条件的高污染(排放)、高能(水)耗、高环境风险的工业项目。
- (A1.1-7) ①坚决遏制高耗能高排放低水平项目盲目发展。严把高耗能高排放低水平项目准入关口,严格落实污染物排放区域削减要求,对不符合规定的项目坚决停批停建。依法依规淘汰落后产能和化解过剩产能。②重点行业企业纳入重污染天气绩效分级,制定"一厂一策"应急减排清单,实现应纳尽纳;引导重点企业在秋冬季安排停产检修计划,减少冬季和采暖期排放。推进重点行业深度治理,实施全工况脱硫脱硝提标改造,加大无组织排放治理力度,深度开展工业炉窑综合整治,全面提升电解铝、活性炭、硅冶炼、纯碱、电石、聚氯乙烯、石化等行业污染治理水平。
- (A1.1-8) 严格执行危险化学品"禁限控"目录,新建危险化学品生产项目必须进入一般或较低安全风险的化工园区(与其他行业生产装置配套建设的项目除外),引导其他石化化工项目在化工园区发展。
- (A1.1-9) 严禁新建自治区《禁止、控制和限制危险化学品目录》中淘汰类、禁止类危险化学品化工项目。严格执行生态保护红线、永久基本农田管控要求,禁止新(改、扩)建化工项目违规占用生态保护红线和永久基本农田。在塔里木河、伊犁河、额尔齐斯河干流及主要支流岸线1公里范围内,除提升安全、环保、节能、智能化、产品质量水平的技术改造项目外,严格禁止新建、扩建化工项目,不得布局新的化工园区(含化工集中区)。
- (A1.1-10) 推动涉重金属产业集中优化发展,禁止新建用 汞的电石法(聚) 氯乙烯生产工艺,新建、扩建的重有色 金属冶炼、电镀、制革企业优先选择布设在依法合规设立 并依法开展规划环境影响评价的产业园区。
- (A1.1-11) 国务院有关部门和青藏高原县级以上地方人民政府应当建立健全青藏高原雪山冰川冻土保护制度,加强对雪山冰川冻土的监测预警和系统保护。青藏高原省级人民政府应当将大型冰帽冰川、小规模冰川群等划入生态保护红线,对重要雪山冰川实施封禁保护,采取有效措施,严格控制人为扰动。青藏高原省级人民政府应当划定冻土区保护范围,加强对多年冻土区和中深季节冻土区的保护,严格控制多年冻土区资源开发,严格审批多年冻土区城镇规划和交通、管线、输变电等重大工程项目。青藏高原省级人民政府应当开展雪山冰川冻土与周边生态系统的协同

保护,维持有利于雪山冰川冻土保护的自然生态环境。

〔A1.2-1〕严格控制缺水地区、水污染严重区域和敏感区域 高耗水、高污染行业发展。

(A1.2-2)建设项目用地原则上不得占用永久基本农田,确需占用永久基本农田的建设项目须符合《中华人民共和国基本农田保护条例》中相关要求,占用耕地、林地或草地的建设项目须按照国家、自治区相关补偿要求进行补偿。

(A1.2-3)以用途变更为住宅、公共管理与公共服务用地的地块为重点,严格建设用地准入管理和风险管控,未依法完成土壤污染状况调查或风险评估的地块,不得开工建设与风险管控和修复无关的项目。

〔A1.2-4〕严格控制建设项目占用湿地。因国家和自治区重点建设工程、基础设施建设,以及重点公益性项目建设,确需占用湿地的,应当按照有关法律法规规定的权限和程序办理批准手续。

(A1.2-5)严格管控自然保护地范围内非生态活动,稳妥推进核心区内居民、耕地有序退出,矿权依法依规退出。

(A1.3-1)任何单位和个人不得在水源涵养区、饮用水水源保护区内和河流、湖泊、水库周围建设重化工、涉重金属等工业污染项目;对已建成的工业污染项目,当地人民政府应当组织限期搬迁。

(A1.3-2)对不符合国家产业政策、严重污染水环境的生产项目全部予以取缔。

(A1.3-3)根据《产业结构调整指导目录》《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》等要求,配合有关部门依法淘汰烧结一鼓风炉 5 炼铅工艺炼铅等涉重金属落后产能和化解过剩产能。严格执行生态环境保护等相关法规标准,推动经整改仍达不到要求的产能依法依规关闭退出。

(A1.3-4)城市建成区、重点流域内已建成投产化工企业和 危险化学品生产企业应加快退城入园,搬入化工园区前企 业不应实施改扩建工程扩大生产规模。

〔A1.4-1〕一切开发建设活动应符合国家、自治区主体功能区规划、自治区和各地颁布实施的生态环境功能区规划、国民经济发展规划、产业发展规划、国土空间规划等相关规划及重点生态功能区负面清单要求,符合区域或产业规划环评要求。

〔A1.4-2〕新建、扩建石化、化工、焦化、有色金属冶炼、 平板玻璃项目应布设在依法合规设立并经规划环评的产业 园区。

(A1.4-3)危险化学品生产企业搬迁改造及新建化工项目必须进入国家及自治区各级人民政府正式批准设立,规划环评通过审查,规划通过审批且环保基础设施完善的工业园区,并符合国土空间规划、产业发展规划和生态红线管控要求。

污染物排

放

(A2.1-1)新、改、扩建重点行业建设项目应符合"三线一单"、产业政策、区域环评、规划环评和行业环境准入管控要求。重点区域的新、改、扩建重点行业建设项目应遵循重点重金属污染物排放"减量替代"原则。

(A2.1-2)以石化、化工、涂装、医药、包装印刷、油品储

本项目产生的废气主要 为 X 射线探伤机在开机 出束状态下,空气在 X 射线作用下分解产生少 量的臭氧、氮氧化物等

符合

管 运销等行业领域为重点,安全高效推进挥发性有机物综合 控 治理,实施原辅材料和产品源头替代工程。

(A2.1-3)促进大气污染物与温室气体协同控制。实施污染物和温室气体协同控制,实现减污降碳协同效应。开展工业、农业温室气体和污染减排协同控制研究,减少温室气体和污染物排放。强化污水、垃圾等集中处置设施环境管理,协同控制氢氟碳化物、甲烷、氧化亚氮等温室气体。加强节约能源与大气污染防治协同有效衔接,促进大气污染防治协同增效。

(A2.1-4) 严控建材、铸造、冶炼等行业无组织排放,推进石化、化工、涂装、医药、包装印刷、油品储运销等行业项目挥发性有机物(VOCs)防治。严格有色金属冶炼、石油加工、化工、焦化等行业项目的土壤、地下水污染防治措施要求。推进工业园区和企业集群建设涉 VOCs"绿岛"项目,统筹规划建设一批集中涂装中心、活性炭集中处理中心、溶剂回收中心等,实现 VOCs 集中高效处理。

(A2.2-1)推动能源、钢铁、建材、有色、电力、化工等重点领域技术升级,控制工业过程温室气体排放,推动工业领域绿色低碳发展。积极鼓励发展二氧化碳捕集利用与封存等低碳技术。促进大气污染物与温室气体协同控制。实施污染物和温室气体协同控制,实现减污降碳协同效应。强化污水、垃圾等集中处置设施环境管理,协同控制氢氟碳化物、甲烷、氧化亚氮等温室气体。加强节约能源与大气污染防治协同有效衔接,促进大气污染防治协同增效。

(A2.2-2) 实施重点行业氮氧化物等污染物深度治理。持续推进钢铁、水泥、焦化行业超低排放改造。推进玻璃、陶瓷、铸造、铁合金、有色、煤化和石化等行业采取清洁生产、提标改造、深度治理等综合措施。加强自备燃煤机组污染治理设施运行管控,确保按照超低排放标准运行。针对铸造、铁合金、焦化、水泥、砖瓦、石灰、耐火材料、金属冶炼以及煤化工、石油化工等行业,严格控制物料储存、输送及生产工艺过程无组织排放。重点涉气排放企业逐步取消烟气旁路,因安全生产无法取消的,安装在线监控系统。

(A2.2-3)强化重点区域大气污染联防联控,合理确定产业布局,推动区域内统一产业准入和排放标准。实施水泥行业错峰生产,推进散煤整治、挥发性有机污染物综合治理、钢铁、水泥、焦化和燃煤工业锅炉行业超低排放改造、燃气锅炉低氮燃烧改造、工业园区内轨道运输(大宗货物"公转铁")、柴油货车治理、锅炉炉窑综合治理等工程项目。全面推行绿色施工,持续推动城市建成区重污染企业搬迁或关闭退出。

(A2.2-4)强化用水定额管理。推进地下水超采综合治理。 开展河湖生态流量(水量)确定工作,强化生态用水保障。

(A2.2-5) 持续推进伊犁河、额尔齐斯河、额敏河、玛纳斯河、乌伦古湖、博斯腾湖等流域生态治理,加强生态修复。推动重点行业、重点企业绿色发展,严格落实水污染物排放标准。加强农副食品加工、化工、印染、棉浆粕、粘胶纤维等企业综合治理和清洁化改造。

(A2.2-6) 推进地表水与地下水协同防治。以傍河型地下水

有害气体,上述有害气体通过大气的对流、扩散,不易集聚,经开阔的现场自然通风不会对周围环境和人员产生影响。本项目不设置洗片室、评片室、暗室,底片只留存电子版。

_				
		饮用水水源为重点, 防范受污染河段侧渗和垂直补给对地		
		下水污染。加强化学品生产企业、工业聚集区、矿山开采		
		区等污染源的地表、地下协同防治与环境风险管控。加强		
		工业污染防治。推动重点行业、重点企业绿色发展,严格		
		落实水污染物排放标准和排污许可制度。加强农副食品加		
		工、化工、印染、棉浆粕、粘胶纤维、制糖等企业综合治		
		理和清洁化改造。支持企业积极实施节水技术改造,加强		
		工业园区污水集中处理设施运行管理,加快再生水回用设		
		施建设,提升园区水资源循环利用水平。		
		(A2.2-7) 强化重点区域地下水环境风险管控,对化学品生		
		产企业、工业集聚区、尾矿库、矿山开采区、危险废物处		
		置场、垃圾填埋场等地下水污染源及周边区域,逐步开展		
		地下水环境状况调查评估,加强风险管控。		
		(A2.2-8) 严控土壤重金属污染,加强油(气) 田开发土壤		
		污染防治,以历史遗留工业企业污染场地为重点,开展土		
١		壤污染风险管控与修复工程。		
١		(A2.2-9)加强种植业污染防治。深入推进化肥农药减量增		
١		效,全面推广测土配方施肥,引导推动有机肥、绿肥替代		
١		(A)		
١				
		弃物管理。实施农膜回收行动,健全农田废旧地膜回收利 用体系。据京陈四地带回收弃。推进农作物社环境入利用		
		用体系,提高废旧地膜回收率。推进农作物秸秆综合利用,		
١		不断完善秸秆收储运用体系,形成布局合理、多元利用的		
		秸秆综合利用格局。		
		(A3.1-1)建立和完善重污染天气兵地联合应急预案、预报		
		预警应急机制和会商联动机制。"乌—昌—石"区域内可能影		
		响相邻行政区域大气环境的项目,兵地间、城市间必须相		
		互征求意见。	本项目运营前必须编制	
		(A3.1-2)对跨国境河流、涉及县级及以上集中式饮用水水	突发环境事故应急预	
		源地的河流、其他重要环境敏感目标的河流,建立健全流	案,并定期组织演练,	
		域上下游突发水污染事件联防联动机制,建立流域环境应	与企业、装置三级应急	
		急基础信息动态更新长效机制,绘制全流域"一河一策一	联动方案,强化区域环	
		图"。建立健全跨部门、跨区域的环境应急协调联动处置机	境风险应急防范能力;	
		制,强化流域上下游、兵地各部门协调,实施联合监测、		
	1.7	联合执法、应急联动、信息共享,形成"政府引导、多元联	项目区无办公区,故不	
	环	动、社会参与、专业救援"的环境应急处置机制,持续开展	涉及采暖。本项目运营	
	境	应急综合演练,实现从被动应对到主动防控的重大转变。	期污染物主要是开机后	
	风	加强流域突发水环境事件应急能力建设,提升应急响应水	产生的 X 射线, 关机后	符合
	险	平,加强监测预警、拦污控污、信息通报、协同处置、基	消失,在现场工作过程	
	防	础保障等工作,防范重大生态环境风险,坚决守住生态环	中采取了相应的污染防	
	控	境安全底线。	治措施,不会对周围环	
		(A3.1-3)强化重污染天气监测预报预警能力,建立和完善	境产生明显影响。本项	
		重污染天气兵地联合应急预案、预警应急机制和会商联动	目不设置洗片室、评片	
		机制,加强轻、中度污染天气管控。	室、暗室,底片只留存	
		(A3.2-1)提升饮用水安全保障水平。以县级及以上集中式	电子版。不会对大气环	
		饮用水水源地为重点,推进饮用水水源保护区规范化建设,	境、地下水环境、声环	
		统筹推进备用水源或应急水源建设。单一水源供水的重点	境、土壤环境产生明显	
		城市于2025年底前基本完成备用水源或应急水源建设,有	影响。	
		条件的地区开展兵地互为备用水源建设。梯次推进农村集		
		中式饮用水水源保护区划定,到2025年,完成乡镇级集中		
		式饮用水水源保护区划定与勘界立标。开展"千吨万人"农村		

· · · · · · · · · · · · · · · · · · ·	饮用水水源保护区环境风险排查整治,加强农村水源水质监测,依法清理饮用水水源保护区内违法建筑和排污口,实施从水源到水龙头全过程监管。强化饮用水水源保护区环境应急管理,完善重大突发环境事件的物资和技术储备。针对汇水区、补给区存在兵地跨界的,建立统一的饮用水水源应急和执法机制,共享应急物资。(A3.2-2)依法推行农用地分类管理制度,强化受污染耕地安全利用和风险管控。因地制宜制定实施安全利用方案,鼓励采取和植结构调整等措施,确保受污染耕地全部实现安全利用和风险管控。因地制宜制定实施设计地产部实现安全利用。(A3.2-3)加强新污染物多环境介质协同治理。排放重点管控新污染物的企事业单位应采取污染控制措施,达到相管理有关要求,依法申领排污许可证或填写排污治记表,控制,依法申领排污的污染控制标准要求。及采取的污染控制者施。排放重点管控新污染物的企事业单位和其他生产经营者应按照相关法律法规要求,对排放(污产基本境型期开展环境监测,评估后息,采取措施防范环境风险,排查整环境险患,依法公开新污染物信息,采取措施防范环境险。也支援污染重点监管单位应严格控制有毒有害物质渗漏、流失、透散。(A3.2-4)加强环境风险预警防控。加强涉危险废物企业、涉重金属企业、化工园区、集中式饮用水水源地及重点流域环境风险调查评估,实施分类分级风险管控,协同推进重点区域、流域生态环境应急管理。实施企业突发生态环境运急预案电子化备案,完成县级以上政府资货环境上查修复。(A3.2-5)强化生态环境应急管理。实施企业突发生态环境高量的资储备系统,结合新疆各地特征污染物的特性,加强应急物资储备系统应急物资信息化建设,掌握社会应急物资储备系统应急,完新疆各地特征污染物的特性,加强应急物资储备系统应急,完新疆各地特征污染物的特性,和强应急强资、统一度等上地、对自对、统行一要求、统一推进的防治管理措施、完善重、对自对、统行、要求、统一推进的防治管理措施、完善重、对目标、统一、等重、外、统一、特别、不同,是不同。	木项目泛誉期田水主要	
资源开发效率要求		本项目运营期用水主要 为员工生活用水,由供 水管网供给,项目水资 源消耗量对区域资源利 用总量占比很小,不会 突破区域资源利用上 线;本项目不占用耕地, 土地资源消耗符合要求	符合

(A4.2-1)土地资源上线指标控制在最终批复的国土空间规划控制指标内。

(A4.3-1)单位地区生产总值二氧化碳排放降低水平完成国家下达指标。

(A4.3-2)到 2025 年,自治区万元国内生产总值能耗比 2020 年下降 14.5%。

(A4.3-3)到 2025年,非化石能源占一次能源消费比重达 18%以上。

(A4.3-4) 鼓励使用清洁能源或电厂热力、工业余热等替代锅炉、炉窑燃料用煤。

(A4.3-5)以碳达峰碳中和工作为引领,着力提高能源资源利用效率。引导重点行业深入实施清洁生产改造,钢铁、建材、石油化工等重点行业以及其他行业重点用能单位持续开展节能降耗。

〔A4.3-6〕深入推进碳达峰碳中和行动。推动能源清洁低碳转型,加强能耗"双控"管理,优化能源消费结构。新增原料用能不纳入能源消费总量控制。持续推进散煤整治。

〔A4.4-1〕在禁燃区内,禁止销售、燃用高污染燃料;禁止新建、扩建燃用高污染燃料的设施。已建成的,应当在规定期限内改用清洁能源。

(A4.5-1)加强固体废物源头减量、资源化利用和无害化处置,最大限度减少填埋量。推进工业固体废物精细化、名录化环境管理,促进大宗工业固废综合利用、主要农业废弃物全量利用。加快构建废旧物资回收和循环利用体系,健全强制报废制度和废旧家电、消费电子等耐用消费品回收处理体系,推行生产企业"逆向回收"等模式。以尾矿和共伴生矿、煤矸石、炉渣、粉煤灰、脱硫石膏、冶炼渣、建筑垃圾等为重点,持续推进固体废物综合利用和环境整治,不断提高大宗固体废物资源化利用水平。推行生活垃圾分类,加快建设县(市)生活垃圾处理设施,到2025年,全疆城市生活垃圾无害化处理率达到99%以上。

(A4.5-2)推动工业固废按元素价值综合开发利用,加快推进尾矿(共伴生矿)、粉煤灰、煤矸石、冶炼渣、工业副产石膏、赤泥、化工废渣等工业固废在有价组分提取、建材生产、市政设施建设、井下充填、生态修复、土壤治理等领域的规模化利用。着力提升工业固废在生产纤维材料、微晶玻璃、超细化填料、低碳水泥、固废基高性能混凝土、预制件、节能型建筑材料等领域的高值化利用水平。

(A4.5-3)结合工业领域减污降碳要求,加快探索钢铁、有色、化工、建材等重点行业工业固体废物减量化路径,全面推行清洁生产。全面推进绿色矿山、"无废"矿区建设,推广尾矿等大宗工业固体废物环境友好型井下充填回填,减少尾矿库贮存量。推动大宗工业固体废物在提取有价组分、生产建材、筑路、生态修复、土壤治理等领域的规模化利用。

(A4.5-4)发展生态种植、生态养殖,建立农业循环经济发展模式,促进农业固体废物综合利用。鼓励和引导农民采用增施有机肥秸秆还田、种植绿肥等技术,持续减少化肥农药使用比例。加大畜禽粪污和秸秆资源化利用先进技术和新型市场模式的集成推广,推动形成长效运行机制。

1.8《新疆维吾尔自治区七大片区"三线一单"生态环境分区管控要求》符合性分析

根据关于印发《新疆维吾尔自治区七大片区"三线一单"生态环境分区管控要求》(2021 年版)的通知(新环环评发(2021)162 号),本项目位于新疆维吾尔自治区乌鲁木齐市头屯河区北站公路 1366 号新疆八钢金属制品有限公司焊一车间内,属于北疆北部片区,具体管控要求见表 1-3。

表 1-3 与《新疆维吾尔自治区七大片区"三线一单"生态环境分区管控要求》符合性分析一览表

文件名称	环境管理政策有关要求	本项目情况	符合性
《新疆维吾 大片区"三 线环境要求。 (2021年版)新环 发(2021) 162号)	除国家规划项目外,乌鲁木齐市七区一县、昌吉市、阜康市、玛纳斯县、呼图壁县、沙湾市建成区及周边敏感区域内不再布局建设煤化工、电解铝、燃煤纯发电机组、金属硅、碳化硅、聚氯乙烯(电石法)、焦炭(含半焦)等新增产能项目。具备风光电清洁供暖建设条件的区域原则上不新批热电联产项目。坚持属地负责与区域大气污染联防联控相结合,以明显降低细颗粒物浓度为重点,协同推进"乌-昌-石"同防同治区域大气环境治理。强化与生产建设兵团第六师、第八师、第十一师、第十二师的同防同治,所有新建、改建、扩建工业项目执行最严格的大气污染物排放标准,强化氮氧化物深度治理,确保区域环境空气质量持续改善。强化挥发性有机物污染防治措施。推广使用低挥发性有机物原辅料,推动有条件的园区(工业集聚区)建设集中喷涂工程中心,配备高效治污设施,替代企业独立喷涂工序。强化企业清洁生产改造,推进节水型企业、节水型工业园区建设,提高资源集约节约利用水平。积极推进地下水超采治理逐步压减地下水超采量,实现地下水采补平衡。强化油(气)资源开发区土壤环境污染综合整治。加强涉重金属行业污染防控与工业废物处理处置。煤炭、石油、天然气开发单位应当制定生态保护和恢复治理方案,并予以实施。生态保护和恢复治理方案,并可以实施。生态保护和恢复治理方案,并可以实施。生态保护和恢复治理方案,有它当向社会公布,接受社会监督。	本自河疆司营活给区很利耕要物射场应对响室只气环境所当区八焊期用,域小用地求主线工的周。、留环境响当区八焊期用,域小用地求主线工的周。、留环境临路制,要供源用破项源运后消平措生设室不环产程,以外,是一个大型,是一个一个一个大型,是一个大型,是一个大型,是一个大工工,是一个一个大型,是一个一个一个大型,是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	符合

1.9 与《关于发布乌鲁木齐市生态环境分区管控动态更新成果的通知》符合性分析

本项目位于新疆维吾尔自治区乌鲁木齐市头屯河区北站公路 1366 号新疆八钢金属制品有限公司焊一车间内,根据《关于发布乌鲁木齐市生态环境分区管控动态更新成果的通知》,乌鲁木齐市共划定 103 个环境管控单元,分为 37 个优先保护单元、60 个重点管控单元和 6 个一般管控单元,本项目选址属于重点管控单元,环境管控单元名称:中国(新疆)自由贸易试验区乌鲁木齐片区经开功能区块重点

管控单元,环境管控单元编码: ZH65010620010。本项目与《关于发布乌鲁木齐市生态环境分区管控动态更新成果的通知》符合性分析见表 1-4。

表 1-4 与《关于发布乌鲁木齐市生态环境分区管控动态更新成果的通知》 符合性分析一览表

	符合性分析一览表								
	生态环境分区管控方案要求	项目情况	符合性						
空间约束布局	(1.1) 执行乌鲁木齐市空间布局约束准入要求。 (1.2) 推动中国(新疆)自由贸易试验区建设,打造国际交通物流中心、国际纺织品研发设计交易中心和医疗康养中心、总部经济及区域国际金融中心;国家农业装备科技研发中心,主要发展先进制造业、农业装备研发制造、智能制造等;金属制品产业重要承载区,主要发展金属制品及机械加工产业等。 (1.3) 飞机噪声大于75dB(计权等效连续感觉噪声级)的机场周围区域,不得规划新建住宅、学校及幼儿园、医院等噪声敏感建筑物。飞机噪声大于70小于75dB,应按照当地政府对该二类区域内国土空间规划的要求确定可否新建住宅、学校等建筑。 (1.4) 支持铁路专用线建设,继续推进多式联运型和干支衔接型货运枢纽(物流园区)建设,提升"公转铁"多式联运货运量,减少大宗货物公路运输比重,降低柴油货车使用强度。 (1.5) 优化园区产业布局,明确产业定位,因地制宜发展特色产业,培育和打造制造业高质量发展示范园区。	本项目严格执行乌鲁木 齐市空间布局约束等疆 维于尔自位马鲁大 等。 维于尔自治区乌鲁大 第一个 第一个 第一个 第一个 第一个 第一个 第一个 第一个 第一个 第一个	符合						
污染物排放管控	(2.1) 执行乌鲁木齐市污染物排放管控要求。 (2.2) 强化源头控制,推进低(无)挥发性有机物含量原辅材料替代。加强园区整治,组织重点行业、工业园区、企业集群、重点管控企业开展对挥发性有机物的排查,明确产生挥发性有机物主要环节,建立管理台账;推动园区建立健全监测预警监控体系,实施园区统一LDAR管理。 (2.3) 持续深化工业污染防治,推进重点行业污染治理设施升级改造和工业企业无组织排放治理。加强重点行业减排管理,确保治理设施按照超低排放限值及相关标准要求运行,切实减少非正常工况排放。新建排放大气污染物的工业项目应当进入工业园区。 (2.4)新建燃气锅炉执行《燃气锅炉大气污染物排放标准》(DB6501/T001-2018)中大气污染控制标准;拟建污水处理厂的出水水质必须达到一级 A 标准。 (2.5)强化工业集聚区污染防治,加快推进工业集聚区(园区)污水集中处理设施建设,加强配套管网建设。推进生态园区建设和循环化改造,完善再生水回用系统,不断提高工业用水重复利用率。排入城镇下水道的污水同时应符合《污水排入城镇下水道水质标准》(GB/T31962-2015)。 (2.6) 机场周围区域落实声环境敏感目标拆迁、安装隔声窗等各项噪声污染防治措施,加强对交通噪声、生产噪声、建筑噪声和变通噪声。增大绿化面积,设置绿化缓冲带,隔离噪声的影响。对厂界噪声无法达到相应区域要求的,企业应对车间内设备进一步降噪,使其达到相应要求。(2.7) 现有排放大气污染物的工业企业应持续开展节能减	本齐求吾头13制内目工网耗量区项资项是线场应会影片底会项市;尔屯6各有不营活给对比资不消运机关作污周。、只大門海域治区新限新期用,区很源占耗营后机过染围本评留行放于鲁公钢焊地主由水源小利用符期产后程防环项片存环块排位乌站八司占水,目资,用耕合污生消中治境目室电境行放于鲁公钢焊地主由水源不上地要染的失采措产不、子、乌管新木路金一;要供资利会线,求物X,取施生设暗版地鲁控疆齐。属车本为水源用突;土,主射在了,明置室。下木要维市。间项员管消总破本地本要。现相不显洗,不水木要维市。	符合						

	排,严格执行大气污染物特别排放限值或超低排放要求。(2.8)鼓励自贸试验区内企业开展自愿碳减排,推动符合条件的企业参与碳排放权交易,推动企业环境信息依法披露。	环境、声环境、土壤环 境产生明显影响。	
环境风险防控	(3.1)土壤重点排污单位应定期对重点区域、重点设施开展隐患排查。发现污染隐患的,应当制定整改方案,及时采取技术、管理措施消除隐患。采取措施防止新增污染,并参照污染地块土壤环境管理有关规定及时开展土壤和地下水环境调查与风险评估,根据调查与风险评估结果采取风险管控或者治理与修复等措施。 (3.2)疑似污染地块应当根据保守原则确定污染物的检测项目。疑似污染地块内可能存在的污染物及其在环境中转化或降解产物均应当考虑纳入检测范畴。	根据本项目运营期特点,本项目运营期用水主要为员工生活用水,由供水管网供给,不会对地下水、土壤产生影响。	符合
资源利用效率	(4.1)执行乌鲁木齐市资源利用效率要求。 (4.2)严格落实最严格水资源管理制度,严守"三条红线" 控制指标。 (4.3)推动区域建筑能效提升,推广合同能源管理、合同 节水管理服务模式,降低建筑运行能耗、水耗,大力推动 可再生能源应用,鼓励智能光伏与绿色建筑融合创新发展。 大力推广超低能耗、近零能耗建筑,发展零碳建筑。 (4.4)禁燃区范围内禁止新建、扩建燃用相应类别高污染 燃料的设施;禁止销售、燃用相应类别的高污染燃料。	本项目严格执行乌鲁木 齐市资源利日运营期用水 主要为员工生活用水 主要为员工生活用,对区 由供环境影响较小;本 目为核技术利用, 下涉及使用高污染燃 料。	

综上所述,本项目建设符合"三线一单"《新疆维吾尔自治区生态环境分区管控动态更新成果》和《关于发布乌鲁木齐市生态环境分区管控动态更新成果的通知》内容的相关要求。

1.10 与《新疆生态环境保护"十四五"规划》符合性分析

根据《新疆生态环境保护"十四五"规划》中第二节分区施策改善区域大气环境——深入推进重点区域大气污染治理。深入推进"乌—昌—石""奎—独—乌"和伊宁市及周边区域大气污染治理,加快推进"乌—昌—石"区域城市细颗粒物和臭氧协同防控"一市一策"驻点跟踪研究工作。强化区域大气污染联防联控,合理确定产业布局,推动区域内统一产业准入和排放标准。实施钢铁、水泥、焦化等行业季节性生产调控措施,推进散煤整治、挥发性有机污染物(以下简称"VOCs")综合治理、钢铁、水泥、焦化和燃煤工业锅炉行业超低排放改造、燃气锅炉低氮燃烧改造、工业园区内轨道运输(大宗货物"公转铁")、柴油货车治理、锅炉炉窑综合治理等工程项目。全面推行绿色施工,持续推动城市建成区重污染企业搬迁或关闭退出。

本项目产生的废气主要为 X 射线探伤机在开机出束状态下,空气在 X 射线作用下分解产生少量的 臭氧、氮氧化物等有害气体,上述有害气体通过大气的对流、扩散,不易集聚,经开阔的现场自然通风 不会对周围环境和人员产生影响。符合《新疆生态环境保护"十四五"规划》要求。

1.11《新疆维吾尔自治区辐射污染防治办法》的符合性分析

《新疆维吾尔自治区辐射污染防治办法》中要求:生产、销售、使用放射性同位素和射线装置的单位,应当持环境影响评价批准文件,向环境保护主管部门申请核发许可证后,在许可证载明的种类和

范围内实施相关活动。从事核技术利用或者伴生放射性矿产资源开发利用的单位,新建、改建、扩建可能产生放射性污染的建设项目,其放射性污染防治设施应当与主体工程同时设计、同时施工、同时投入使用。转让放射性同位素和射线装置,应当在持有辐射安全许可证的单位之间进行。跨州、市(地)使用放射性同位素和射线装置的单位,应当在实施使用前不少于10个工作日向移入地州、市(地)环境保护主管部门备案,并在使用结束后5个工作日内办理备案注销手续。使用放射性同位素和射线装置实施野外作业的,应当在作业场所划定控制区和监督区,设置放射性辐射警示标志,并加强现场安全保卫,严禁无关人员进入作业现场。在野外贮存放射性同位素和射线装置的,应当贮存在独立封闭的临时贮存场所内。贮存场所应当由专人看管,并采取防火、防盗、防射线泄漏等安全防护措施。生产、销售、使用放射性同位素和射线装置的单位,应当对本单位的辐射安全和防护状况进行年度评估,编写年度评估报告,于每年1月31日前报送核发许可证的环境保护主管部门。从事核技术利用和伴生放射性矿产资源开发利用的单位,应当按照国家规定组织辐射工作人员进行个人剂量监测和职业健康体检,建立个人剂量档案和健康档案,并保存至年满七十五周岁,或者停止辐射工作三十年。

新疆八钢金属制品有限公司工业X射线现场探伤作业项目,在严格执行《工业探伤放射防护标准》(GBZ117-2022)和本报告中提出的污染防治措施,并认真落实各项辐射环境管理制度的前提下,项目正常运行对周围环境产生的辐射影响,可满足标准要求,满足环境风险防控要求。本项目符合《新疆维吾尔自治区辐射污染防治办法》中的管理要求。

表 2 放射源

序号	核素名称	总活度(Bq)/ 活度(Bq)×枚数	类别	活动种类	用途	使用场所	贮存方式与地点	备注
/	本项目不涉	/	/	/	/	/	/	/
/	及放射源	/	/	/	/	/	/	/

注: 放射源包括放射性中子源,对其要说明是何种核素以及产生的中子流强度(n/s)。

表 3 非密封放射性物质

序	核素	理化	活动	实际日最大	日等效最大操	年最大用量	用途	操作方式	使用场	贮存方式
号	名称	性质	种类	操作量(Bq)	作量(Bq)	(Bq)	川瓜	沐叶刀八	所	与地点
/	本项目不涉 及非密封放	/	/	/	/	/	/	/	/	/
/	射性物质	/	/	/	/	/	/	/	/	/

注: 日等效最大操作量和操作方式见《电离辐射防护与辐射源安全基本标准》(GB18871-2002)。

表 4 射线装置

(一)加速器:包括医用、工农业、科研、教学等用途的各种类型加速器

序号	名称	类别	数量	型号	加速 粒子	最大能量 (MeV)	额定电流(mA)/ 剂量率(Gy/h)	用途	工作场所	备注
/	本项目不涉及加 速器	/	/	/	/	/	/	/	/	/

(二) X 射线机,包括工业探伤、医用诊断和治疗、分析等用途

序号	名称	类别	数量	型号	最大管电 压(kV)	最大管电流 (mA)	用途	工作场所	备注
1	X射线探伤机	II类	1	RTIS-225/HP	225	7mA	无损检测	探伤工作室	定向
2	X 射线探伤机	II类	1	RTIS-225/HP	225	7mA	无损检测	探伤工作室	定向

(三)中子发生器,包括中子管,但不包括放射性中子源

序	ta T1.	类	数	型	最大管电	最大靶电	中子强		工作	氘	〔靶情况		A 33.
号	名称	别	量	号	压(kV)	流 (µA)	度(n/s)	用途	场所	活度(Bq)	贮存方式	数量	备注
/	本项目不涉及 中子发生器	/	/	/	/	/	/	/	/	/	/	/	/

表 5 废弃物 (重点是放射性废弃物)

名称	状态	核素 名称	活度	月排 放量	年排放 总量	排放口 浓度	暂存情况	最终去向
臭氧、 氮氧化 物	气态	/	/	少量	少量	少量	不暂存	通过机械 排风设施 排出

注:1.常规废弃物排放浓度,对于液态单位为mg/L,固体为mg/kg,气态为 mg/m^3 ;年排放总量用kg。

^{2.}含有放射性的废物要注明,其排放浓度、年排放总量分别用比活度(Bq/L或Bq/kg或 Bq/m^3)和活度(Bq)。

表 6 评价依据

- (1)《中华人民共和国环境保护法》(修订版)(2015年1月1日起实施);
- (2)《中华人民共和国环境影响评价法》(修订本)(2018年12月29日起实行):
- (3)《中华人民共和国放射性污染防治法》(2003年10月1日起实施);
- (4)《建设项目环境保护管理条例》(修订本),国务院令第 682 号,2017 年 10 月 1 日发布施行;
- (5) 《放射性同位素与射线装置安全和防护条例》,国务院令第449号,国 务院令第709号令修改(2019年3月2日);
- (6)《放射性同位素与射线装置安全许可管理办法》(修订本),环境保护部令第7号公布,2019年8月22日起实施。
- (7) 《放射性同位素与射线装置安全和防护管理办法》(修正本), (国家 环境保护总局令第 31 号,原环境保护部令第 47 号修改);

(8) 《建设项目环境影响评价分类管理名录》2021年1月1日起施行;

- (9) 新疆维吾尔自治区人民政府令第 192 号《新疆维吾尔自治区辐射污染防治办法》(2015 年 7 月 1 日起施行):
- (10) 《产业结构调整指导目录(2024年本)》:
- (11) 《关于建立放射性同位素与射线装置辐射事故分级处理和报告制度的通知》, (环发〔2006〕45 号原国家环保总局、公安部、卫生部文件 2006 年 9 月 26 日);
- (12)《关于核技术利用辐射安全与防护培训和考核有关事项的公告》,自 2020 年1月1日起实施;
- (13)《关于进一步优化辐射安全考核的公告》,生态环境部公告(2021年第9号),2021年03月15日起实施;
- (14) 《关于发布<射线装置分类> 的公告》, (原环境保护部、国家卫生 和 计划生育委员会公告,公告 2017 年第 66 号, 2017 年 12 月 6 日起实施)。

技术

标准

- (1)《电离辐射防护与辐射源安全基本标准》(GB18871-2002);
- (2) 《工业探伤放射防护标准》(GBZ117-2022);
 - (3) 国家环境保护部《辐射环境保护管理导则 核技术利用建设项目 环境 影

法规 文件

	响评价文件的内容和格式》(HJ 10. 1-2016);							
	(4)《辐射环境监测技术规范》(HJ61-2021);							
	(5) 《500kV 以下工业 X 射线探伤机防护规则》(GB22448-2008);							
	(6) 《职业性外照射个人监测规范》(GBZ128-2019);							
	(7) 《放射工作人员健康标准》(GBZ98-2002);							
	(8)《工作场所有害因素职业接触限值 第1部分 化学有害因素》(GBZ							
	2.1-2007);							
	(1) 项目委托书;							
其他	(2)新疆八钢金属制品有限公司提供的其他资料;							
75 IE	(3)《辐射防护导论》。							

(4)《新疆维吾尔自治区环境天然放射性水平调查研究报告》

表 7 保护目标与评价标准

7.1 评价范围:

根据《辐射环境保护管理导则 核技术利用建设项目 环境影响评价文件的内容和格式》(HJ 10.1-2016)中的相关规定,"放射源和射线装置应用项目的评价范围,通常取装置所在场所实体屏蔽物边界外 50m 的范围(无实体边界项目视具体情况而定,应不低于100m 的范围),对于I类放射源或I类射线装置的项目可根据环境影响的范围适当扩大"。本项目属于II类射线装置的项目,探伤室具有实体边界,因此,本项目探伤室内探伤评价范围为探伤室边界外 50m 范围。

图 7-1 项目探伤室评价范围示意图

7.2 保护目标:

本项目环境保护目标为探伤室实体边界周围 50m 评价范围内的人员。根据现场踏勘,本项目周边 50m 范围内没有居民点,因此,本项目环境保护目标为探伤机操作人员和公众。项目环境保护目标详见下表:

		农 /-1 平坝日外境床》			
污染源	方位	保护目标	影响人群	距离	人数
坂ルウム	东南侧	控制室	本项目辐射 工作人员	紧邻	2 人
探伤室内: 工业 X 射	东侧	更衣室		0-4m	1人
<u>工业 A 别</u> 线探伤机	南侧	厂区内部道路、内部空地	公众	0-50m	若干
线1木1/J1/JL	西侧	厂区内部道路、内部空地	公从	0-50m	2 人
	北侧	厂区内部道路、内部空地		27-42m	若干

表 7-1 本项目环境保护目标

楼上	无	-	-	-
楼下	土层	-	-	-

注: 表中所述方位均以固定式探伤区域为中心

7.3 评价标准:

7.3.1《电离辐射防护与辐射源安全基本标准》(GB18871-2002)

本项目引用条款节选如下:

"本标准适用于实践和干预中人员所受电离辐射照射的防护和实践中源的安全。 根据附录 B 中规定:

- B1 剂量限值
- B1.1 职业照射
- B1.1.1 剂量限值
- B1.1.1.1 应对任何辐射工作人员的职业照射水平进行控制,使之不超过下述限值: 由审管部门决定的连续 5 年的年平均有效剂量(但不可作任何追溯性平均),20mSv;
- B1.2 公众照射
- B1.2.1 剂量限值

实践使公众中有关关键人群组的成员所受到的平均剂量估计值不应超过下述限值:

a) 年有效剂量, 1mSv"

对辐射工作人员、公众的剂量控制不仅要满足剂量限值的要求,而应依据辐射防护最优化原则,按照剂量约束和潜在照射危险约束的防护要求,把辐射水平降低到低于剂量限值的一个合理达到的尽可能低的水平。因此,本次评价采用年剂量管理约束值如下:

- a) 辐射工作人员采用年剂量限值的 1/4, 即 5mSv/a 作为年剂量管理约束值。
- b) 公众成员取年有效剂量限值的 1/10, 即 0.1mSv 作为有效年剂量约束值。
- 7.3.2、《工业探伤放射防护标准》(GBZ 117-2022)中固定式探伤的放射防护要求本项目引用条款节选如下:

探伤室放射防护要求

- 6.1.1 探伤室的设置应充分注意周围的辐射安全,操作室应避开有用线束照射的方向并应与探伤室分开。探伤室的屏蔽墙厚度应充分考虑源项大小、直射、散射、屏蔽物材料和结构等各种因素。无迷路探伤室门的防护性能应不小于同侧墙的防护性能。X 射线探伤室的屏蔽计算方法参见 GBZ/T 250。
 - 6.1.2 应对探伤工作场所实行分区管理, 分区管理应符合 GB 18871 的要求。

- 6.1.3 探伤室墙体和门的辐射屏蔽应同时满足:
- a) 关注点的周围剂量当量参考控制水平,对放射工作场所,其值应不大于 100 μ Sv/周,对公众场所,其值应不大于 5 μ Sv/周;
 - b) 屏蔽体外 30cm 处周围剂量当量率参考控制水平应不大于 2.5 µ Sv/h。
 - 6.1.4 探伤室顶的辐射屏蔽应满足:
- a) 探伤室上方已建、拟建建筑物或探伤室旁邻近建筑物在自辐射源点到探伤室顶内表面边缘所张立体角区域内时,探伤室顶的辐射屏蔽要求同 6.1.3;
- b) 对没有人员到达的探伤室顶,探伤室顶外表面 30cm 处的周围剂量当量率参考控制水平通常可取 100 μ Sv/h。
- 6.1.5 探伤室应设置门-机联锁装置,应在门(包括人员进出门和探伤工件进出门)关闭后才能进行探伤作业。门-机联锁装置的设置应方便探伤室内部的人员在紧急情况下离开探伤室。在探伤过程中,防护门被意外打开时,应能立刻停止出束或回源。探伤室内有多台探伤装置时,每台装置均应与防护门联锁。
- 6.1.6 探伤室门口和内部应同时设有显示"预备"和"照射"状态的指示灯和声音提示装置,并与探伤机联锁。"预备"信号应持续足够长的时间,以确保探伤室内人员安全离开。"预备"信号和"照射"信号应有明显的区别,并且应与该工作场所内使用的其他报警信号有明显区别。在醒目的位置处应有对"照射"和"预备"信号意义的说明。
- 6.1.7 探伤室内和探伤室出入口应安装监视装置,在控制室的操作台应有专用的监视器,可监视探伤室内人员的活动和探伤设备的运行情况。
- 6.1.8 探伤室防护门上应有符合 GB 18871 要求的电离辐射警告标志和中文警示说明。
- 6.1.9 探伤室内应安装紧急停机按钮或拉绳,确保出现紧急事故时,能立即停止照射。按钮或拉绳的安装,使人员处在探伤室内任何位置时都不需要穿过主射线束就能够使用。按钮或拉绳应带有标签,标明使用方法。
- 6.1.10 探伤室应设置机械通风装置,排风管道外口避免朝向人员活动密集区。每小时有效通风换气次数应不小于 3 次。
 - 6.1.11 探伤室应配置固定式场所辐射探测报警装置。
 - 6.2 探伤室探伤操作的放射防护要求
 - 6.2.1 对正常使用的探伤室应检查探伤室防护门-机联锁装置、照射信号指示灯等防护

安全措施。

- 6.2.2 探伤工作人员在进入探伤室时,除佩戴常规个人剂量计外,还应携带个人剂量报警仪和便携式 X-γ剂量率仪。当剂量率达到设定的报警阈值报警时,探伤工作人员应立即退出探伤室,同时防止其他人进入探伤室,并立即向辐射防护负责人报告。
- 6.2.3 应定期测量探伤室外周围区域的剂量率水平,包括操作者工作位置和周围毗邻区域人员居留处。测量值应与参考控制水平相比较。当测量值高于参考控制水平时,应终止探伤工作并向辐射防护负责人报告。
- 6.2.4 交接班或当班使用便携式 $X-\gamma$ 剂量率仪前,应检查是否能正常工作。如发现便携式 $X-\gamma$ 剂量率仪不能正常工作,则不应开始探伤工作。
- 6.2.5 探伤工作人员应正确使用配备的辐射防护装置,如准直器和附加屏蔽,把潜在的辐射降到最低。
- 6.2.6 在每一次照射前,操作人员都应该确认探伤室内部没有人员驻留并关闭防护门。 只有在防护门关闭、所有防护与安全装置系统都启动并正常运行的情况下,才能开始探伤 工作。
- 6.2.7 开展探伤室设计时未预计到的工作,如工件过大等特殊原因必须开门探伤的,应遵循本标准第 7.1 条~第 7.4 条的要求。
 - 6.3 探伤设施的退役

当工业探伤设施不再使用,应实施退役程序。包括以下内容:

- a) 有使用价值的γ放射源可在获得监管机构批准后转移到另一个已获使用许可的机构,或者按照本标准第 5.2.5 条中废旧放射源的处理要求执行。
 - b) 掺入贫铀的屏蔽装置应与γ射线源一样对待。
 - c) X 射线发生器应处置至无法使用,或经监管机构批准后,转移给其他已获许可机构。
 - d) 包含低活度 γ 射线源的管道爬行器,应按照相关要求执行。
 - e) 当所有辐射源从现场移走后,使用单位按监管机构要求办理相关手续。
 - f) 清除所有电离辐射警告标志和安全告知。
- g) 对退役场所及相关物品进行全面的辐射监测,以确认现场没有留下放射源,并确认污染状况。

7.3.3《职业性外照射个人监测规范》(GBZ128-2019)

7.3.3.1 监测周期或频次

- (1) 常规监测的周期应综合考虑放射工作人员的工作性质、所受剂量的大小、 剂量变化程度及剂量计的性能等诸多因素。常规监测周期一般为 1 个月,最长不得 超过 3 个月。
 - (2) 任务相关检测和特殊检测应根据辐射检测实践的需要进行。

7.3.3.2 监测系统与使用剂量计

- (1) 在预期外照射剂量有可能超过剂量限值的情况下(例如从事有可能发生 临界事故的操作或应急操作时),工作人员除应佩戴常规检测个人剂量计外,还应 佩戴报警式个人剂量计或事故剂量计。
- (2)对于比较均匀的辐射场,当辐射主要来自前方时,剂量计应佩戴在人体 躯干前方中部位置,一般在左胸前或锁骨对应的领口位置;当辐射主要来自人体背面时,剂量计应佩戴在背部中间。
- (3)对于工作中穿戴铅围裙的场合,通常应根据佩戴在围裙里边躯干上的剂量计估算工作人员的实际有效剂量。当受照剂量可能超过调查水平时,则还需在围裙外面衣领上另外佩戴一个剂量计,以估算人体未被屏蔽部分的剂量。
- (4)对于(3)所述工作情况,建议采用双剂量计监测方法(在铅围裙内躯干 上再佩戴另一个剂量计),且宜在身体可能受到较大照射的部位佩戴局部剂量计(如头箍剂量计、腕部剂量计、指环剂量计等)。

7.3.3.3 《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)(节选)

- 第3条探伤室屏蔽要求
- 第 3.1 条探伤室辐射屏蔽的剂量参考控制水平
- 第 3.1.1 条探伤墙和入口门外周围剂量当量率和每周周围剂量当量应满足下列要求:
- a) 周剂量参考控制水平(Hc) 和导出剂量率参考控制水平(Hc,d):
- 1) 人员在关注点的周围剂量参考控制水平 Hc 如下:

职业工作人员: Hc≤100µSv/周

公众: Hc≤5µSv/周

2) 相应 Hc 的导出剂量率参考控制水平 Hc,d 按式 7-1 计算:

 $H_{c,d}=H_{c}/(t \cdot U \cdot T)$ (式 7-1)

式中:

Hc——周剂参考控制水平,单位为微希每周(µSv/周);

U——探伤装置向关注点方向照射的使用因子;

T——人员在相应关注点驻留的居留因子;

t——探伤装置周照射时间,单位为小时每周(h/周)。

t 按照式 (7-2) 计算:

t=w/ (60·*I*) (式 7-2)

式中:

W——X 射线探伤的周围工作负荷(平均每周 X 射线探伤照射的累积" $mA \cdot min$ "值), $mA \cdot min$ /周;

60——小时与分钟的换算关系;

I——X 射线探伤装置在最高管电压下的常用最大电流,单位为毫安(mA)。

b) 关注点最高剂量率参考控制水平 Hc,max;

$$H_{c,max}$$
=2.5 μ Sv/h (式 7-3)

c)关注点剂量率参考控制水平

Hc 为上述 a)的 Hc,d 和 b)的 Hc,max 两者中较小值。

7.4 标准汇总

表 7-2 项目采用的标准限值要求一览表

1

序号		项目	控制值	标准依据	
1	年有效	剂量限值	工作人员: 20mSv/a; 公众成员: 1mSv/a	GB 18871-2002	
1	剂量	管理目标值	工作人员: 5mSv/a; 公众成员: 0.1mSv/a	GB 188/1-2002	
2	探伤室结	辐射屏蔽要求	屏蔽体外 30cm 处周围剂量当量率应满足关注点剂量率参考控制水平(具体控制水平见表 11-3)。	GBZ 117-2022 GBZ/T250-2014 及其修 改单	
4	工作场	工作场所气体浓度 臭氧≤0.3mg/m³ 二氧化氮≤5mg/m³		GBZ 2.1-2019	

表 8 环境质量和辐射现状

8.1 地理位置和场所位置

建设地点位于工业 X 射线探伤机存放场所位于新疆维吾尔自治区乌鲁木齐市头 屯河区北站公路 1366 号新疆八钢金属制品有限公司焊一车间。项目探伤机工作室四 周均为工业用地及厂房,厂房地理位置见附图一。具体坐标为东经 87°22′16.456″,北纬 43°52′38.453″。场址内设探伤机工作室等。本公司 X 射线探伤机存放 于公司探伤机工作室内。项目探伤机工作室周边均为工业用地及厂房,东侧为焊管 通道区,南侧为补焊区,西侧为厂区墙壁,北侧为厂区空地,上方为屋顶、下方为 土旱。木项目平面布置图见下图 8 1-1。

土层。本项目平面布置图见下图 8.1-1。 空地 探伤机工作室 焊管通道区 补焊区 图 8.1-1 平面布置图

8.2.环境现状评价的对象、监测因子

8.2.1 环境现状评价对象

项目地环境本底辐射水平。

8.2.2 监测因子

环境地表γ辐射剂量率

8.3.描述监测方案、质量保证措施、监测点位和结果等内容

8.3.1 监测方案

- 1、监测单位:新疆德能辐射环境科技有限公司
- 2、监测日期: 2025年7月28日
- 3、监测方式:现场监测
- 4、监测依据: HJ 61-2021《辐射环境监测技术规范》
- 5、天气环境条件: 天气: 晴; 温度: 22.1~23.5℃; 相对湿度: 44~45%。
- 6、监测报告编号: (2025) 德能辐检字 DL 第 006 号
- 7、监测仪器的参数与规范见表 8-1。

表 8-1X-γ剂量率仪参数和监测规范

仪器名称	X-γ剂量率仪						
型号/编号	AT1121/44409						
生产厂家	白俄罗斯						
能量相应	目应 15keV~3MeV						
量程	10nSv∼10Sv						
松水叶十	校准字第 202409105111 号						
校准证书	有效期: 2024年9月23日~2025年9月22日						
나는 얼마 된다 그분	《辐射环境监测技术规范》(HJ/T61-2001)						
监测规范	《环境地表γ辐射剂量率测定规范》GB/T14583-93						

监测方法: 采取γ外照射测量探头(探测器灵敏体积中心)距地面 1m 高度,每个测点读取 10个数据求平均值。

8.3.2 质量保证措施

- 1、委托监测单位通过了新疆维吾尔自治区实验室计量认证。
- 2、合理布设监测点位,保证各监测点位布设的科学性和可比性。
- 3、监测方法采用国家有关部门颁布的标准,委托监测单位监测人员经考核并持有合格证书上岗。
 - 4、委托监测单位监测仪器每年定期经计量部门检定,检定合格后方可使用。
- 5、委托监测单位每次测量前、后均对监测仪器的工作状态是否正常进行检查, 并用检验源对仪器进行校验。
 - 6、由委托监测的专业人员按操作规程操作仪器,并做好记录。
- 7、委托监测单位监测报告严格实行三级审核制度,经过校对、校核,最后由技术总负责人审定。
 - 8、委托监测报告无监测单位监测专用章、骑逢章及 CMA 章无效。

8.3.3 监测点位和结果

根据项目的平面布局和周围环境情况,在评价范围(拟建探伤室外围 50m)内关注点布设监测点。根据 HJ 61-2021《辐射环境监测技术规范》相关要求,环境 γ 辐射剂量率测量点位应依据测量目的布设,并结合源和照射途径以及人群分布和人为活动情况仔细选择。本次监测目的是了解项目拟建场所环境辐射现状水平,并考虑项目建成后对拟建辐射工作场所周围相邻区域及评价范围人员停留较多及活动频繁的区域的影响情况,结合项目评价范围内环境情况及平面布局,本次监测共布设了 9 个监测点位,在拟建探伤室位置及周围人员可到达和易停留的位置也布设了监测点,能够反映项目拟设区域辐射环境现状水平。监测点位图见图 8-1,详细检测结果见表 8-2,检测报告见附件五。

图 8-1 固定式探伤场所检测点位示意图

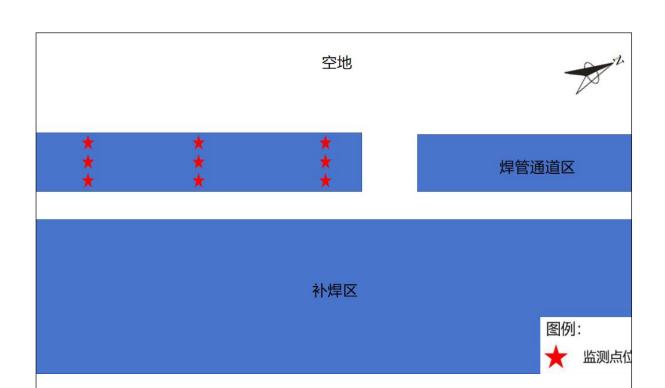


表 8-2 固定式探伤工作场所 X-γ辐射致空气吸收剂量率本底检测结果

序号		点位名称	监测结果 (nGy/h)	备注
1#		拟建工业 X 射线探伤工作场所北侧	92.3	
2#		拟建工业 X 射线探伤工作场所东北侧	90.5	
3#		拟建工业 X 射线探伤工作场所东侧	91.2	
4#	】 - 拟建工业	拟建工业 X 射线探伤工作场所东南侧	90.4	
5#	X射线探伤	拟建工业 X 射线探伤工作场所南侧	92.2	/
6#	工作场所	拟建工业 X 射线探伤工作场所西南侧	88.9	
7#		拟建工业 X 射线探伤工作场所西侧	88.3	
8#		拟建工业 X 射线探伤工作场所西北侧	90.2	
9#		拟建工业 X 射线探伤工作场所中央	89.5	

注: 对于 X-γ射线 1nGy/h=1nSv/h

新疆八钢金属制品有限公司拟建工业X射线探伤工作场所的X- γ 辐射剂量率处于(88.3~92.3)nGy/h 之间。在新疆乌鲁木齐市环境天然贯穿辐射水平的测值范围 5.03×10-8Gy/h~40.35×10-8Gy/h 范围内,属于正常本底水平。

表 9 项目工程分析与源项

9.1 工程设备和工艺分析

9.1.1X 射线机工作原理

工业射线探伤是利用 X 射线探伤机产生 X 射线投照于探测物件的一侧,将胶片或接收装置固定在探测部位的一侧,曝光后取下胶片盒,经显影和定影,即可根据胶片上的阴影情况鉴定物件质量与缺陷部位。

X 射线装置主要由 X 射线管和高压电源组成。X 射线管由安装在真空玻璃壳中的阴极和阳极组成。阴极是钨制灯丝,它装在聚焦杯中。当灯丝通电加热时,电子就"蒸发"出来,而聚焦杯使这些电子聚集成束,直接向嵌在金属阳极中的靶体射击。高电压加在 X 射线管的两极之间,使电子在射到靶体之前被加速达到很高的速度。靶体一般采用高原子序数的难熔金属制成。高速电子轰击靶体产生 X 射线。探伤机内部结构见图 9-1。

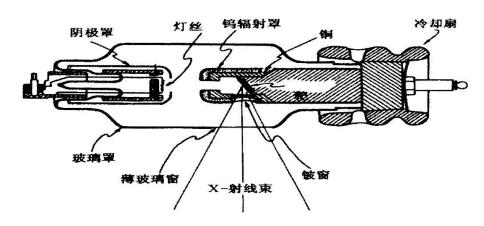


图 9-1X 射线机内部结构示意图

9.1.2 设备工艺和流程分析

1、探伤室探伤

本项目采用射线成像技术,辐射工作人员在控制台进行远距离操作 X 射线探伤机, 对拟检测的工件进行 X 射线无损检测,其工作流程如下:

- (1) 待检工件送入探伤室;
- (2) 在探伤工件的焊缝初始探伤位置处贴上胶片;
- (3) 手动调整 X 射线发生器到合适位置及探伤机照射方向;
- (4) 人员撤离探伤室,关闭防护门;
- (5) 再次检查探伤室内无异常情况后开启 X 射线机进行无损检测;
- (6) 达到预定的曝光时间后自动关闭 X 射线探伤机, 完成一次探伤:

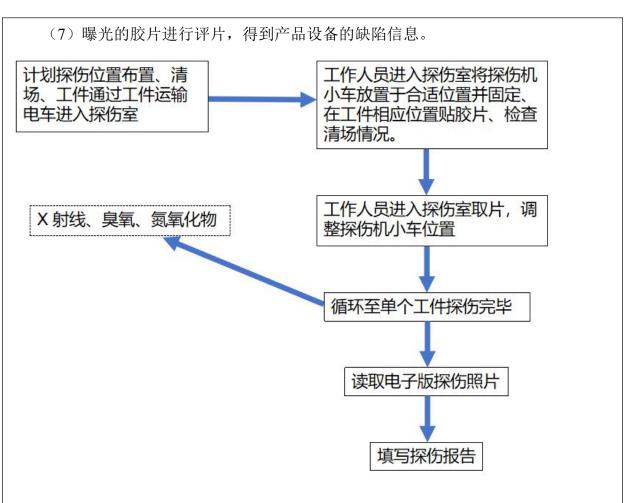


图 9-3 探伤室探伤工作流程和产污过程示意图

9.1.3 运行工况与人员配置计划

本项目投入运行后,本项目现场作业时,2~3 人一组,分为 2 组,探伤作业人员在探伤工作室开展无损检测工作。本项目两台设备每周最大拍片量合计不超过 50 张,X 射线探伤机探伤时拍摄每张片的出束(曝光)时间约 2min,一周训机 1 次,1 次约5min,一年按 50 周考虑,则探伤机周出束时间约为 1.75h,年出束时间约为 87.5h。本项目 X 射线探伤装置在不工作时,存放于专用设备贮存间,双人双锁,由专人管理。

公司已配备 4 名辐射工作人员, 具体分工情况见下表。

序号	工作组	姓名	性别	工作岗位	参加培训情况	有效日期
1	第一组		男	探伤岗	已培训合格	2020.9.22- 2025.9.22
2	7		女	探伤岗	已培训合格	2022.6.20- 2027.6.20

表 9-2 辐射工作人员分工情况

3	第二组		女	探伤岗	已培训合格	2022.6.20- 2027.6.20
4	为一组 	张昱霞	女	探伤岗	已培训合格	2022.6.20- 2027.6.20

9.2 污染源项描述

一、建设、安装过程污染源分析

本项目探伤室在建设阶段不产生放射性废物、放射性废液和放射性气体,产生的环境影响主要是拟建探伤室施工时产生的噪声、扬尘、废水、固体废物等环境影响。本项目工程量较小,没有大型机械设备进入施工场地,施工场地安排有序,施工人员较少,有抑尘措施,施工期短,合理安排施工秩序,施工时间,本项目对周围环境敏感点的影响在可接受的范围内。随着施工期的结束,这些影响也随即结束。

(1) 环境空气

本项目的环境空气影响主要是扬尘,由散装水泥和建筑材料运输等施工活动产生。 本项目的工程量小,产生的扬尘量很小。

(2) 噪声

本项目产生噪声影响的主要是施工机械、运输、混凝土浇筑及现场处理等。噪声值一般在65~80dB(A)之间,施工场地的噪声对周围环境有一定的影响,但随着施工的结束而结束。

(3)废水

施工期污水主要来自两个方面:一是施工废水,二是施工人员的生活污水。

(4) 固体废弃物

本项目量小,产生的生活垃圾、建筑垃圾、土石方很少。

(5) 设备安装及调试过程

设备安装及调试过程会产生放射性污染。在安装调试阶段,应加强辐射防护管理,保证各屏蔽体屏蔽到位,关闭防护门,禁止无关人员靠近。安装及调试均有厂家或专业人员进行。

二、运行期间正常工况下污染源分析

1、由X射线探伤机的工作原理可知,X射线是随机器的开、关产生和消失。本项目使用的X射线探伤机只有在开机并处于出线状态时(训机、拍片过程)才会发出X射

- 线。X射线具有较强的穿透性,探伤机在对工件进行照射的工况下,X射线通过主射、漏射、散射对作业场所及周围环境产生辐射影响。
 - 2、X射线与空气接触,使空气电离产生少量臭氧(O₃)和氮氧化物(NOx)。
 - 3、本项目不设置洗片室、评片室、暗室,底片只留存电子版。

三、运行期事故工况下污染源分析

- (1)室内探伤时,工作人员进入探伤室后未全部撤离,仍有人滞留在探伤室内,造成有关人员被误照;
 - (2) 检修时,误开机时,维修人员受到潜在的照射伤害;
- (3) X射线探伤机被盗,不了解X射线机性能的人员开机使用不当,对周边人员造成不必要的照射;
 - (4) 门-机联锁失效,人员在X射线未切断的情况下进入探伤室导致误照射;
 - (5) 铅防护门因维护不足,可能导致射线泄漏,对附近人员造成不必要的照射。 事故工况下,X射线为污染因子,污染途径为外照射。

表 10 辐射安全与防护

10.1 项目安全设施

10.1.1 辐射工作场所分区管理

根据国家标准《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)和《工业探伤放射防护标准》(GBZ 117-2022)的规定,将 X 射线探伤机工作场所分为控制区和监督区,便于辐射防护管理和职业照射控制。探伤机场所的分区如下:

- (1) 探伤室控制区:将 X 射线探伤机所在探伤室内规划为控制区,并在探伤室周围设置电离辐射警告标志及中文警示说明。该区需要最优化的辐射屏蔽和冗余的门机联锁系统,以便控制正常工作条件下的正常照射或防止污染扩散,并预防潜在照射或限制潜在照射的范围。
- (2) 探伤室监督区:将探伤室外的其他区域以及控制室设为监督区,在该区内需要对职业照射条件进行监督和评价。

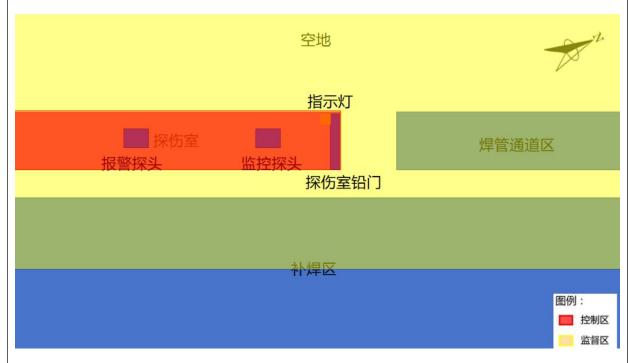


图 10-1 X 射线探伤室工作场所分区

10.1.2 辐射工作场所屏蔽设计

本项目探伤室位于公司生产车间。本项目总建筑面积为 252.857m², 其中探伤室净空长 10m、宽 4.5m、高 4m, 探伤室建筑面积为 45m²; 配套辅助机房总建筑面积为 207.857m²。探伤室四周墙体及顶板均采用密度不小于 2.35g/cm³ 的混凝土。防护门采用铅门防护。探伤室屏蔽设施和厚度见表 10-1。

	表 10-1 探伤室屏蔽防护-	一览表
序号	屏蔽体	屏蔽结构和厚度
1	探伤室西北墙	600mm 混凝土
2	探伤室西南墙(主射方向)	600mm 混凝土
3	探伤室东北墙	600mm 混凝土
4	探伤室东南墙(主射方向)	600mm 混凝土
5	探伤室顶板	400mm 混凝土
6	探伤室防护门	14mmPb
7	控制室防护门	14mmPb

10.1.3 通风防护设计

探伤室设计机械通风,探伤室顶部设有 300mm×300mm 的排风口,拟安装一台轴流风机,设计通风量为 1000m³/h,实际通风量按 80%的通风效率计算,本项目通风量为 800m³/h。探伤室净容积为 180m³,探伤室排风换气次数可达 4.4 次/h。能保证探伤室每小时换气不小于 3 次的要求。

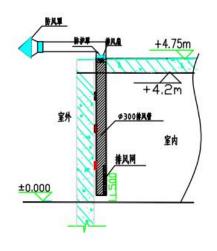


图 10-2 排风系统剖面图

10.2 辐射安全防护措施

建设单位拟为本项目辐射工作人员建立剂量档案和职业健康监护档案,并定期对其进行个人剂量监测和职业健康体检。建设单位拟为本项目配置 1 台辐射剂量巡测仪和 4 台个人剂量报警仪(带直读剂量功能)、4 个个人剂量计,符合移动探伤监测设备的配备要求。

为确保探伤室辐射工作人员的工作环境和探伤室外部环境安全,以及避免辐射事故

的发生,该公司拟对探伤室设置多重安全防护措施,具体如下:

(1) 门机联锁装置

探伤室设置了门-机联锁装置,保证在防护门关闭后X射线装置才能进行无损检测。门打开时立即停止X射线照射,关上门不能自动开始X射线照射。

(2) 照射状态指示灯

探伤室上部设置"预备"和"照射"状态的指示灯和声音提示装置。"预备"信号应持续足够长的时间。"预备"信号和"照射"信号有明显的区别,"预备"信号为黄色灯光,"照射"信号为红色灯光。照射状态指示装置与 X 射线探伤装置联锁。

探伤室内、外醒目位置处需补充清晰的对"预备"和"照射"信号意义的说明。

(3) 视频监控

本项目探伤室内东南角设置了1个摄像头,在操作台上有专用的监视器,可监视探伤室室内探伤设备的运行情况;探伤室西南角面对探伤室方向已安装有1个摄像头,可用于监测探伤室出入口人员活动情况。

(4) 警告标志

探伤室正面上方张贴了明显的电离辐射警告标志并附中文警示说明。应按照《工业探伤放射防护标准》(GBZ 117-2022)要求在探伤室防护门和探伤室大门上张贴符合GB 18871 要求的电离辐射警告标志和中文警示说明。

(5) 紧急停机装置

本项目共设置 9 个紧急停机按钮,分别在操作台设置 2 个紧急停机按钮,探伤室内 东北、西南墙各设置 1 个紧急停机按钮,西北、东南比较长,各设置 2 个紧急停机按钮, 控制室防护门旁设置 1 个紧急停机按钮,确保出现紧急事故时,能立即停止照射。

(6) 控制台

控制台上设置有钥匙开关,只有在打开控制台钥匙开关后,X射线管才能出束,钥匙只有在停机或待机状态下才能拔出。

(7) 探伤室拟配置固定式场所辐射探测报警装置,探头拟安装在探伤室右侧门夹 缝上部。

(8) 通风设施

探伤室采用机械排风方式通风,探伤室顶部设有 300mm×300mm 的排风口,拟安装了一台轴流风机,设计通风量为 1000m³/h,实际通风量按 80%的通风效率计算,该台

轴流风机通风量为800m³/h。探伤室净容积为180m³,探伤室排风换气次数可达4.44次/h,能保证探伤室每小时换气不小于3次的要求。

根据《工业探伤放射防护标准》(GBZ 117-2022),本项目辐射安全和防护措施 还应满足以下要求:

(1) 使用单位放射防护要求

- a) 开展工业探伤工作的使用单位对放射防护安全应负主体责任。
- b) 应建立放射防护管理组织,明确放射防护管理人员及其职责,建立和实施放射防护管理制度和措施。
- c) 应对从事探伤工作的人员按 GBZ 128 的要求进行个人剂量监测,按 GBZ 98 的要求进行职业健康监护。
 - d) 探伤工作人员正式工作前应取得符合 GB/T 9445 要求的无损探伤人员资格。
 - e) 应配备辐射剂量率仪和个人剂量报警仪。
 - f) 应制定辐射事故应急预案。

(2) X 射线探伤机工作前检查项目应包括:

探伤机外观是否完好;

电缆是否有断裂、扭曲以及破损:

液体制冷设备是否有渗漏:

门机联锁是否正常工作;

报警设备和警示灯是否正常运行;

螺栓等连接件是否连接良好;

机房内安装的固定辐射检测仪是否正常。

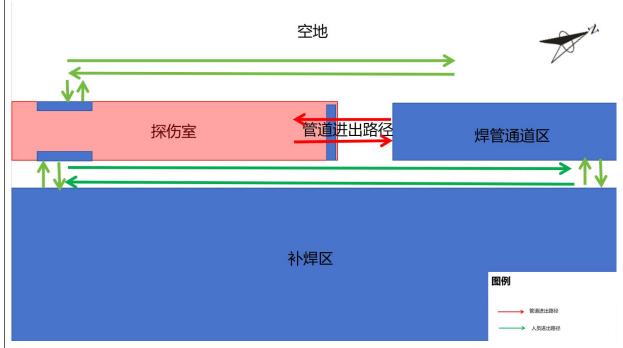
(3) X 射线探伤机的维护应符合下列要求:

使用单位应对探伤机的设备维护负责,每年至少维护一次。设备维护应由受过专业培训的工作人员或设备制造商进行;

设备维护包括探伤机的彻底检查和所有零部件的详细检测;

当设备有故障或损坏需更换零部件时,应保证所更换的零部件为合格产品;

应做好设备维护记录。


(4) 警示要求

探伤室防护门上部设有显示"预备"和"照射"状态的指示灯和声音提示装置。"预备"

信号应持续足够长的时间,以确保探伤室内人员安全离开。"预备"信号和"照射"信号应有明显的区别,并且应与该工作场所内使用的其他报警信号有明显区别。照射状态指示装置应与 X 射线探伤装置联锁。探伤室内、外醒目位置处应有清晰的对"预备"和"照射"信号意义的说明。探伤室防护门上应有电离辐射警告标识和中文警示说明。

(5) 其他防护安全要求

交接班或当班使用便携式 $X-\gamma$ 剂量率仪前,应检查便携式 $X-\gamma$ 剂量率仪是否正常工作。如在检查过程中发现便携式 $X-\gamma$ 剂量率仪不能正常工作,则不应开始探伤工作。探伤工作人员应正确使用配备的辐射防护装置,把潜在的辐射降到最低。只有在防护门关闭、所有防护与安全装置系统都启动并正常运行的情况下,才能开始探伤工作。本项目人员及管道路径详见图。

10.3 环保投资估算

项目环保投资估算见下表。

表10-1辐射安全防护和环保设施投资一览表

本项目总投资1391.2万元,环保投资17.9万元,占总投资的1.3%。

项目		设施 (措施)	金额 (万元)
		屏蔽(包括:四周墙体、顶板、防护铅门)	5
	探伤室	工作状态指示灯、门灯联动装置、急停开关、	0.2
探伤室	屏蔽措施	门-机连锁	0.2
		辐射防护警示标识	0.05
	个人防护用品	1件铅衣、4个个人剂量计、	3

	4 个个人剂量报警仪	
有害气体处理	通排风系统	1.5
	固定式场所辐射探测报警装置	1
	1 台便携式 X-γ剂量率检测仪	1
监测及应急	声光报警器	0.1
	警示牌	0.05
	应急和救助的物资准备	1
环评及验收	环评及竣工环保验收监测	5
合计		17.9

10.4 三废的治理

本项目运行过程中空气电离产生的少量臭氧(O₃)和氮氧化物(NO_x)通过通风系统排出探伤室外,少量的臭氧和氮氧化物的排放对环境影响较小。

本项目不设置洗片室、评片室、暗室,底片只留存电子版。不涉及洗片废液、废(显) 定影液和废胶片等感光材料废物。

10.4.1 非放射性有害气体

X 射线探伤机在曝光过程中会产生有害气体臭氧,为防止臭氧在铅房内不断累积导致室内臭氧浓度超标,探伤室采用机械排风方式通风,探伤室顶部设有 300mm×300mm的排风口,拟安装了一台轴流风机,设计通风量为 1000m³/h,实际通风量按 80%的通风效率计算,该台轴流风机通风量为 800m³/h。探伤室净容积为 180m³,探伤室排风换气次数可达 4.44 次/h,能保证探伤室每小时换气不小于 3 次的要求。排风口采用铅罩进行屏蔽,以确保排气孔无射线泄露。本项目排气设施可使探伤产生的臭氧浓度符合室内:《工作场所有害因素职业接触限值第 1 部分:化学有害因素》(GBZ2.1-2019)中臭氧最高允许浓度 0.30mg/m³。由换气设施分析,本项目铅房内的臭氧排出铅房后由排风管道引出,在探伤室顶排放,经自然分解和稀释,也符合《环境空气质量标准》(GB3095 —2012)中臭氧小时平均浓度二级标准(0.20mg/m³)的要求,不会对环境空气造成明显影响。根据辐射剂量预测分析,该铅房换气系统符合辐射防护要求。

表 11 环境影响分析

11.1 建设阶段对环境的影响

本项目施工期主要的污染因子有:噪声、扬尘、固体废物、设备安装及调试过程可能产生的放射性污染。

1、扬尘及防治措施

施工期扬尘主要为探伤室建设时的机械敲打、钻洞等产生的粉尘。为减小施工期间 扬尘对外界环境的影响,在施工时将施工区域围挡,并加强施工现场管理,避免无关人员进入施工区。

2、废水及防治措施

施工期间产生的废水主要表现为施工人员的生活污水。由于本项目施工均在公司厂区内进行,厂区内已布设市政污水管网,施工期施工废水和生活污水产生量很小,依托厂区内污水管网排放至乌鲁木齐头屯河区污水处理厂,对环境影响较小。

3、噪声及防治措施

施工期噪声主要来自于探伤室的建设、装修。通过选取噪音低、振动小的设备操作,并合理安排施工时间等措施能减轻对新建探伤室周边厂房的影响。

4、固体废物及防治措施

施工期固体废物主要为装修垃圾。由于本项目施工均在公司厂区内进行,厂区内有垃圾桶等,施工期固体废物产生量很小,依托厂区垃圾桶定期由环卫部门运至乌鲁木齐 头屯河区垃圾填埋场,对环境影响较小。

5、放射性污染及防治措施

调试期间, X 射线是污染环境的主要因子, 此时探伤室各屏蔽体已建设完成, 能够有效屏蔽 X 射线。 X 射线与空气作用, 产生少量的臭氧和氮氧化物, 少量的有害气体通过探伤室机械通风系统排出、迅速扩散、不累积, 对环境影响可忽略不计。

本项目工程量小,施工期为3个月,施工期短,影响是暂时的,随着探伤室建设的完成,影响也将消失。通过采取相应的防治措施后,对外界的影响小。

11.2 运行阶段对环境的影响

(一) 评价原则

- (1)基本原则:对于符合正当化的放射工作实践,以防护最优化为原则,使各类人员的受照当量剂量不仅低于规定的限值,而且控制到可以合理做到的尽可能低的辐射水平。这一考虑包括:正常运行、维修、退役以及应急状态,也包括了具有一定概率的导致重大照射的潜在照射情况。
 - (2) 剂量管理目标值:辐射工作人员 5mSv/a,公众 0.1mSv/a;
- (3) 探伤室内探伤 X 射线探伤机实体边界外表面 0.3m 处剂量当量率控制目标值应不大于 2.5μSv/h。

(二) X 射线探伤机使用过程中对周围环境的辐射影响分析

1、探伤室辐射屏蔽介绍和评价

(1) 关注点选取

对于一般 X 射线机,其侧向漏束较小,起决定作用的是被照体的散射束。因此主射方向(有用线束)按照 X 射线进行考虑,其他方向按照散射和泄露 X 射线进行考虑。本项目 X 射线数字成像检测系统为定向探伤,有用线束方向朝西北侧、东南侧、上、下(避开操作间和工件进出的方向),每次只向一个方向出束。本项目中,探伤室下为土层,理论计算时,探伤室西北侧、东南侧、顶板的屏蔽体按有用线束方向计算,探伤室东南侧控制室防护门外设置有迷道,控制室防护门不受有用线束直接照射,因此探伤室西南侧、东北侧、探伤室防护门及控制室防护门屏蔽体按散射和泄漏辐射计算,以管电压 250kV、最大管电流 10mA 进行计算。本项目关注点辐射源及屏蔽参数信息见表11-1;关注点与辐射源点的距离见表 11-2;关注点示意图见图 11-1、图 11-2:

+ • • •	关注点辐射	ᅛᇄᇎᅲ	尼杰会 类	ᆙ
表 11-1	*** P 55.	타디기부 시기	1生的7多9V =	一见衣

序号	关注点	需屏蔽的辐射源	屏蔽结构和厚度					
1	探伤室西北侧墙外 30cm 处	有用线束	600mm 混凝土					
2	探伤室西南侧墙外 30cm 处	漏射线和散射线	600mm 混凝土					
3	探伤室东北侧墙外 30cm 处	漏射线和散射线	600mm 混凝土					
4	探伤室东南侧墙外 30cm 处	有用线束	600mm 混凝土					
5	探伤室顶板外 30cm 处	有用线束、天空反散射	400mm 混凝土					
6	探伤室防护门外 30cm 处	漏射线和散射线	14mmPb					
7	控制室防护门外 30cm 处	漏射线和散射线	14mmPb					
注,因	注: 因地面下无建筑, 不考虑下底面辐射影响。							

(是为1, 1, 3,心1,以四,田为1,次11,0

表 11-2 关注点与辐射源点的距离

号		距离 mm	mm	点的距离 mm
1	探伤室西北侧墙外 30cm 处	2250	600 (混凝土)	3150
2	探伤室西南侧墙外 30cm 处	5000	600 (混凝土)	5900
3	探伤室东北侧墙外 30cm 处	5000	600 (混凝土)	5900
4	探伤室东南侧墙外 30cm 处	2250	600 (混凝土)	3150
5	探伤室顶板外 30cm 处	3800	400 (混凝土)	4500
6	探伤室防护门外 30cm 处	5000	14 (Pb)	5314
7	控制室防护门外 30cm 处	5483	14 (Pb)	5797

注: 关注点与辐射源点的距离=辐射源到探伤室内侧距离+屏蔽厚度+30cm。

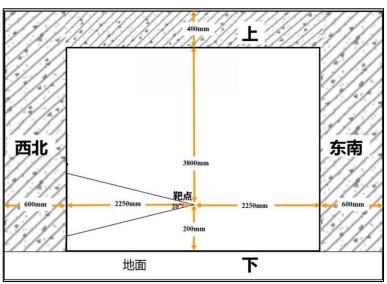


图 11-1 关注点示意图(立面)

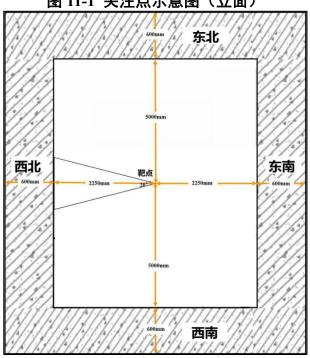


图 11-2 关注点示意图(俯视面)

- (2) 关注点剂量率参考控制水平
- ①探伤室几何参数和辐射屏蔽参数选取

根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)

$$\dot{H} = \dot{H}_C / (\mathbf{t} \cdot \mathbf{U} \cdot \mathbf{T}) \tag{\ddagger 11-1}$$

式中:

H——剂量率参考控制水平, μ Sv/h;根据《工业 X 射线探伤室辐射屏蔽规范》 (GBZ/T 250-2014), 与最高剂量率参考控制水平 2.5μSv/h 相比取较小值;

Hc——周剂量参考控制水平, μSv/周, 职业工作人员取 100μSv/周 (按年剂量管理 目标值 5mSv/a 换算)、公众取 $2\mu Sv/$ 周(按年剂量管理目标值 0.1mSv/a 换算);

t——探伤装置周照射时间,单位为小时每周(h/周);

U——探伤装置向关注点方向照射的使用因子:

T——人员在相应关注点驻留的居留因子。

②探伤室辐射屏蔽的剂量参考控制水平计算结果

本项目两台设备每周最大拍片量合计不超过 50 张, X 射线探伤机探伤时拍摄每张 片的出束(曝光)时间约 2min,一周训机 1 次, 1 次约 5min,一年按 50 周考虑,则探 伤机周出束时间约为 1.75h, 年出束时间约为 87.5h。西南侧为该公司厂区道路, 居留因 子取 1/8: 西北侧为该公司 1#生产车间,居留因子取 1: 东北侧为公司内部空地,人员 不长时间居留,居留因子取 1/8:探伤室防护门居留因子取 1/8:东南侧为迷道及控制室 防护门,居留因子取1;探伤室屋顶无建筑,居留因子取1/8。

表 11-3 本项目探伤室辐射屏蔽的剂量参考控制水平计算结果

本项目各探伤室辐射屏蔽的剂量参考控制水平计算结果如下表:

	天汪点	涉及人员 	(µSv/周)	(h/周)	U	T	(µSv/h)	(µSv/h)	(µSv/h)
	西南侧防护 墙外 30cm 处	公众	5	1.75	1	1/8	22.9	2.5	2.5
探	西北侧防护 墙外 30cm 处	公众	5	1.75	1	1	2.9	2.5	2.5
伤室	东北侧防护 墙外 30cm 处	公众	5	1.75	1	1/8	22.9	2.5	2.5
Ŧ	东南侧防护 墙外 30cm 处	辐射工作 人员	100	1.75	1	1	57.1	2.5	2.5
	探伤室防护 门外 30cm 处	公众	5	1.75	1	1/8	22.9	2.5	2.5
	控制室防护 门外 30cm 处	辐射工作 人员	100	1.75	1	1	57.1	2.5	2.5

探伤室顶部 防护墙外	人员不可达	/	100	100	
30cm 处					

- 注: ①周剂量参考控制水平 Hc 取值: 根据 GBZ/T250-2014 进行取值;
- ②探伤装置向关注点方向照射的使用因子 U 均按最不利考虑, 取 1;
- ③人员在相应关注点驻留的居留因子 T 根据 GBZ/T250-2014 附录 A 进行取值,公司 1# 生产车间位于探伤室西北侧,且紧邻探伤室,正常工况下设备出束时,所有人员均在探伤室外,探伤室内无人员停留。辐射工作人员仅在操作间控制台操作设备。本项目保守考虑,T 值取 1。
- (3) 探伤室屏蔽厚度核算

(a) 有用线束屏蔽厚度核算

①有用线束计算公式

本次计算公式《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)中公式进行估算:

$$B_1 = \frac{\dot{H} \cdot R^2}{I \cdot H_0} \tag{\vec{\pi} 11-2}$$

式中:

B1——屏蔽透射因子;

 H_0 — 距辐射源(靶点)1m 处输出量, $\mu Sv \cdot m^2/(mA \cdot h)$,本项目管电压为 250kV,根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014),本项目取 250kV 管电压下的输出量,本项目辐射源(靶点)1m 处输出量为 $8.34E + 05\mu Sv \cdot m^2/(mA \cdot h)$;

I——为最高管电压下的常用最大管电流, mA:

H——剂量率参考控制水平,详见表 11-3;

R——为辐射源点到计算点距离, m。

②计算结果

主照面有用线束辐射屏蔽厚度参数及计算结果见表 11-4,根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)附录 B 中图 B.1 及图 B.2 透射曲线查询估算理论计算屏蔽厚度。

表 11-4 有用线束辐射屏蔽厚度参数及计算结果表

关注点	探伤室西北侧墙外 30cm 处	探伤室东南侧墙外 30cm 处	探伤室顶板外 30cm 处
$H (\mu Sv/h)$	2.5	2.5	100
$H_0 (\mu Sv \cdot m^2 / (mA \cdot h))$	8.34E+05	8.34E+05	8.34E+05

R (m)	3.15	3.15	4.50
I (mA)	5	5	5
\mathbf{B}_1	5.95E-06	5.95E-06	4.86E-04
理论计算屏蔽 厚度(mm)	550 (混凝土)	550(混凝土)	350 (混凝土)
实际设计厚度 (mm)	600 (混凝土)	600 (混凝土)	400(混凝土)
是否合理	合理	合理	合理

(b) 漏射屏蔽厚度计算

①漏射屏蔽计算公式

在给定关注点剂量率控制值时,按式11-3计算泄漏辐射屏蔽透射因子:

$$B_2 = \frac{\overset{\bullet}{H} \cdot R^2}{\overset{\bullet}{H}_L}$$

式中;

B₂——屏蔽透射因子;

 \dot{H}_L — 距靶点 1 mX 射线管组装体的泄漏辐射剂量率, $\mu \text{Sv/h}$,根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)表 1,本项目为 $5000 \mu \text{Sv/h}$ 。

R——辐射源(靶点)至关注点的距离, m;

对估算出的屏蔽投射因子, 所需的屏蔽物质厚度 X 采用以下公式计算:

$$X = -TVL \cdot \lg B_2$$

式中:

X——屏蔽物质厚度,与 TVL 取相同的单位;

TVL——X 射线在屏蔽物质中的什值层厚度。根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014),本项目取 250kV 管电压下混凝土的什值层厚度为 90mm、铅的什值层厚度为 2.9mm。

②计算结果

漏射辐射屏蔽厚度如表 11-5 所示:

表 11-5 漏射辐射屏蔽厚度计算表

	关注点	Н	R	H_{L}	TVL	估算厚度	设计厚度	是否
大任点	$(\mu Sv/h)$	(m)	$(\mu Sv/h)$	(mm)	(mm)	(mm)	合理	
	东北侧防护 墙外 30cm 处	2.5	5.9	5000	90	158 (混凝土)	600 (混凝土)	合理
	西南侧防护 墙外 30cm 处	2.5	5.9	5000	90	158 (混凝土)	600 (混凝土)	合理

探伤室防护 门外 30cm 处	2.5	5.31	5000	2.9	5.4 (Pb)	14 (Pb)	合理
控制室防护 门外 30cm 处	2.5	5.8	5000	2.9	5.1 (Pb)	14 (Pb)	合理

(c) 散射辐射屏蔽厚度计算

①散射辐射计算公式

在给定关注点剂量率控制值时,按式11-5计算泄漏辐射散透射因子:

$$B_3 = \frac{\dot{H} \cdot \dot{R}_S}{I \cdot H_0} \cdot \frac{R_0^2}{F \cdot \alpha}$$
 \Rightarrow 11-5

式中:

B₃——屏蔽透射因子;

H——散射线所致关注点的剂量率, μ Sv/h;

I——X 射线探伤装置在最高管电压下的常用最大管电流, mA:

 H_0 ——为距离辐射源点 1m 处输出量, $\mu Sv.m^2/(mA.h)$,以 $mSv·m^2/(mA·min)$ 为单位的值乘以 6×10^4 ;

F— R_0 处的辐射野面积, m^2 ;

α——散射因子;入射辐射被单位面积(lm²)散射体散射到距其 lm 处的散射辐射剂量率与该面积上的入射辐射剂量率的比;

R₀——辐射源(靶点)至探伤工件的距离, m;

R_S——散射体至关注点的距离, m; 本次评价为保守估算, 取散射体至关注点(墙外 30cm 处)的最近距离。

标准中 B.4.2 中给出"当 X 射线探伤装置圆锥束中心轴和圆锥边界的夹角为 20°时, $R_0^2/F\cdot\alpha$ 因子的值为 50($200kV\sim400kV$),本项目 X 射线实时成像检测系统辐射角度为 20°, X 射线探伤装置圆锥束中心轴和圆锥边界的夹角为 10°。

对估算出的屏蔽投射因子,所需的屏蔽物质厚度 X 采用式 11-4 计算。

表 11-6 X 射线 90°散射辐射最高能量相应 kV 值

原始 X 射线 (kV)	散射辐射(kV)					
150≤kV≤200	150					
200 <kv≤300< td=""><td colspan="4">200</td></kv≤300<>	200					
300 <kv≤400 250<="" td=""></kv≤400>						
注: 该表仅用于以什值层计算散射辐射在屏蔽物质中的衰减。						

本项目 250kV 射线机辐射散射能量取 200kV, 对应的混凝土的什值层为 86mm, 铅 的什值层为 1.4mm。

②计算结果

根据公式计算各关注点处散射辐射计算结果如表 11-7 所示。

估算 设计 Н RsI $H_0 \left(\mu Sv \cdot m^2 \right)$ TVL 是否 关注点 $R_0^2/F \cdot \alpha$ 厚度 厚度 $(\mu Sv/h)$ (m)(mA) $(mA \cdot h)$ (mm) 合理 (mm)(mm) 东北侧防护墙 306 (混 600 (混 2.5 5.9 5.34E+05 50 86 合理 外 30cm 处 凝土) 凝土) 西南侧防护墙 600 (混 306 (混 2.5 5.9 5 5.34E+05 50 86 合理 外 30cm 处 凝土) 凝土) 探伤室防护门 5.0 (Pb) 14 (Pb) 2.5 5.31 5 50 合理 5.34E+05 1.4 外 30cm 处 控制室防护门 2.5 5.8 5 5.0 (Pb) 14 (Pb) 5.34E+05 50 1.4 合理 外 30cm 处

表 11-7 散射辐射屏蔽厚度计算表

(4) 复合分析

根据《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014),漏射辐射屏蔽厚度 与散射辐射屏蔽厚度相差一个什值层(TVL)厚度或更大时,采用其中较厚的屏蔽:相 差不足一个什值层(TVL)厚度时,在较厚的屏蔽上增加一个半值层厚度。经计算,本 项目散射屏蔽厚度与漏射辐射屏蔽厚度相差出现小于 1 个什值层(TVL)厚度,应在较 厚的屏蔽上增加一个半值层厚度。

由 GBZ/T 250-2014 附录 B.2 可知,本次 250kV 管电压下混凝土的半值层厚度为 28mm, 铅的半值层厚度为 0.86mm。

表 11-8 本项目探伤室屏蔽厚度计算与实际设计厚度汇总表

本项目探伤室需要的屏蔽厚度如下表 11-8 所示。

立に沿 旦不滞

关注点	有用线束屏 蔽厚度(mm)	泄露辐射 屏蔽厚度 (mm)	散射辐射 屏蔽厚度 (mm)	理论计算屏 蔽厚度(mm)	ywy 计厚度 (mm)	是否满 足屏蔽 要求
探伤室西南侧墙 外 30cm 处	/	158(混凝 土)	306 (混凝土)	334(混凝土)	600 (混 凝土)	满足
探伤室西北侧墙 外 30cm	550(混凝土)	/	/	550(混凝土)	600(混 凝土)	满足
探伤室东北侧墙 外 30cm 处	/	158 (混凝土)	306 (混凝土)	334(混凝土)	600(混 凝土)	满足
探伤室东南侧防 护墙外 30cm 处	550(混凝土)	/	/	550(混凝土)	600(混 凝土)	满足
探伤室顶板外 30cm	350(混凝土)	/	/	350(混凝土)	400(混 凝土)	满足

探伤室防护门外 30cm 处	/	5.4 (Pb)	5.0 (Pb)	6.26 (Pb)	14 (Pb)	满足
控制室防护门外 30cm 处	/	5.1 (Pb)	5.0 (Pb)	5.96 (Pb)	14 (Pb)	满足

由表11-8可知,本项目探伤室屏蔽厚度设计合理。

(3) 辐射环境影响分析

本次计算公式参照剂量率参照《工业X射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)中公式进行估算。

①有用线束计算公式

在给定屏蔽物质厚度 X 时,按式 11-6 计算有用线束在关注点的剂量率:

$$\dot{H} = \frac{I \cdot H_0 \cdot B}{R^2} \tag{\textsterling 11-6}$$

式中:

H——关注点的剂量率,μSv/h;

I——X 射线探伤装置在最高管电压下的常用最大管电流, mA;

 H_0 ——距辐射源(靶点)1m 处输出量:

B——屏蔽透射因子,由附录 B.1 曲线估算出相应的屏蔽透射因子;

R——辐射源(靶点)至关注点的距离, m;

②漏射线计算公式

在给定屏蔽物质厚度 X 时,按式 11-7 计算泄漏辐射在关注点的剂量率:

$$\dot{H} = \frac{\dot{H}_L \cdot B}{R^2} \tag{\textsterling 11-7}$$

式中;

H₁——距靶点 1mX 射线管组装体的泄漏辐射剂量率, μSv/h;

B——屏蔽透射因子;

R₀——辐射源(靶点)至关注点的距离, m:

③散射线计算公式

在给定屏蔽物质厚度 X 时,按式 11-8 计算散射辐射在关注点的剂量率:

$$\dot{H}_S = \frac{I \cdot H_0 \cdot B}{R_S^2} \cdot \frac{F \cdot \alpha}{R_0^2} \tag{\vec{x} 11-8}$$

式中;

Hs——散射线所致关注点的剂量率,μSv/h;

I——X 射线探伤装置在最高管电压下的常用最大管电流, mA;

 H_0 ——距辐射源(靶点)1m 处输出量, $mGy\cdot m^2/(mA\cdot min)$,《工业 X 射线探伤室辐射屏蔽规范》(GBZ/T 250-2014)中 250kV 管电压滤过条件 3mm 铝的输出量为 $13.9mGy\cdot m^2/(mA\cdot min)$ 。

B——屏蔽透射因子;

F——R₀处的辐射野面积, m²;

α——散射因子;

R₀——辐射源(靶点)至探伤工件的距离, m;

Rs——散射体至关注点的距离, m;

④对于泄射和散射线,屏蔽物质厚度 X 与屏蔽透射因子 B 相应的关系 a)对于给定的屏蔽物质厚度 X,相应的辐射屏蔽透射因子 B 按式 11-9 计算:

$$B=10^{-X/TVL}$$
 (式 11-9)

式中:

X——屏蔽物质厚度,与 TVL 取相同的单位;

TVL——查 GBZ/T 250-2014 中表 B.2;

b) 对于估算出的屏蔽透射因子 B, 所需的屏蔽物质厚度 X 按式 11-10 计算:

$$X=-TVL \cdot lgB$$
 (式 11-10)

TVL—查表:

B—达到剂量参考控制水平 Hc 时所需的屏蔽透射因子。

⑤天空反散射线计算公式

根据 NCRP-151 号报告, 按式 11-11 计算天空反散射线在关注点的剂量率:

$$H = \frac{2.5 \times 10^{-2} \left(B_{xs} D_{10}^{'} \Omega^{1.3} \right)}{\left(d_{s} d_{s} \right)^{2}}$$
 (\$\pi\$ 11-11)

式中:

H——在距离 X 射线辐射源 d_s 处地面,天空反散射的 X 射线周围剂量当量率 (Sv-h-1);

Bxs—X 射线屋项的屏蔽透射比:

Q——由 X 射线源与屏蔽墙对向的立体角(Sr);

di——在屋顶上方 2m 处离靶的垂直距离(m);

ds——X 射线源至 P 点的距离(m)。

屋顶的屏蔽透射比 Bxs 为:

$$B_{xs} = 4 \times 10^{-5} \left[\frac{H_M d_i^2 d_s^2}{D_{10} \Omega^{1.3}} \right]$$
 (± 11-12)

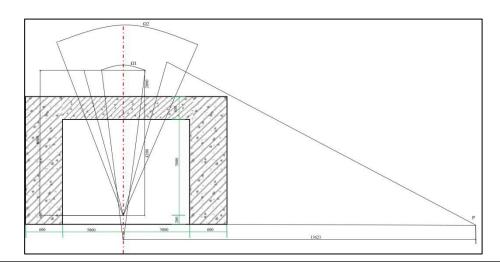
式中:

 H_M —P点所在位置的最大允许周围剂量当量率($\mu Sv \cdot h^{-1}$),2.5。

Bxs—X 射线屋顶的屏蔽透射比;

 Ω —由 X 射线源与屏蔽墙对向的立体角 (Sr);

di—在屋顶上方 2m 处离靶的垂直距离 (m);


ds—X 射线源至 P 点的距离(m);

 D_{10} —距 X 射线源 1m 处的吸收剂量率(m^2 ·Gy· h^{-1})。

D₁₀根据公式 11-3 进行计算,公式中 fe 需要根据靶材料进行修正。表 A.1 中给出的数据是电子束打高 Z 靶的数据,通常被辐照的物质很少为高 Z 材料,因此需要对靶进行修正。本项目探伤机出束后照射在管材上,理论上考虑最不利影响,按照没有管材屏蔽的情况下,计算天空反散射,直接照射在屋顶,混凝土 0°方向的修正系数 fe 为 0.5。

探伤 D₁₀ 修正=60×13.9×5×0.5Gy·h⁻¹=2085Gy·h⁻¹

计算出屋顶屏蔽透射比 Bxs 后,按上述十分之一值层求解法计算出屋顶的屏蔽厚度。

图 11-3 厂房屋顶厚度计算示意图

屋顶天空反散射计算结果见表 11-10。假设 P 点位于公众所能达区域,区域居留因 子取 1/4,因此 P 点所在位置的最大允许周围剂量当量率:

 H_M =0.1mSv/(24h×365×1/4)=4.57×10⁻⁵mSv·h-1=4.57×10⁻² μ Sv·h⁻¹ 对探伤室:

Bxs= $4\times10^{-5}\times(5.56\times10^{-2}\times6.20^{2}\times17.92^{2}/(2085\times0.18^{1.3})=1.27\times10^{-4}$;

 $Bx=10^{-n}$ 或 $n=log_{10}$ (1/Bx) (公式 11-13)

S=T₁+(n-1)Te (公式 11-14)

式中:

S----屏蔽体厚度(cm);

 T_1 ——在屏蔽厚度中,朝向辐射源的第一个十分之一值层(cm),具体数据详见 GBZ/T 250—2014 表 B2,混凝土为 90mm;

Te——平衡十分之一值层,该值近似于常数 (cm),具体数据详见 GBZ/T 250—2014 表 B2, 混凝土为 90mm;

n——为十分之一值层的个数。

根据公式 11-13 计算出 n 值,n==log₁₀(1/Bx) ==log₁₀(1/1.27×10⁻⁴) =3.9

再根据公式 11-14 计算出需要屋顶厚度 S

 $S=T_1+(n-1)Te=9+(4.1-1)\times 9=35.1$ (cm)

表 11-9 屋顶屏蔽厚度核算结果

	₩ □	D10	H_{M}	0	Di	Ds	Bxs	所需屋顶	设计厚度
楼层	(Gy/h)	(µSv/h)	Ω	(m)	(m)	BXS	厚度(cm)	(cm)	
	探伤室	2085	4.57E-2	0.18	6.20	17.92	1.27E-4	35.1	40

根据表11-9的计算结果可知,只要探伤室屋顶的厚度大于35.1cm,P点的剂量率将小于4.57×10-2 μ Sv·h-1,满足对应区域年剂量率要求;本项目探伤室屋顶厚度设计为40cm,满足要求。

在设计厚度下探伤室屋顶厚度 40cm 的情况下, 天空反散射计算结果见表 11-10:

表 11-10 屋顶天空反散射计算结果

楼层	D10 (Gy/h)	T1/Te (cm)	Ω	Di (m)	Ds (m)	Bxs	设计厚度 (cm)	HM (μSv/h)
探伤室	2085	9/9	0.18	6.2	17.92	1.27E-4	40	5.7E-8

根据上述计算结果可知,天空反散射值能满足标准要求的屏蔽外30cm处及以外区域周围剂量当量率不能超过2.5μSv/h的要求。

(4) 计算参数

公司配置 X 射线探伤机共 2 台,分别为 XXH-2505 周向型工业 X 射线探伤机、 XXG-2505 定向型工业 X 射线探伤机,两台探伤机均用于探伤室探伤。根据公司提供资料,以上 2 台 X 射线探伤机在探伤作业中均单独使用,不会出现两台探伤机同时使用的情况。本项目探伤机采用 XXH-2505 周向型工业 X 射线探伤机来对探伤室进行辐射屏蔽计算,探伤机相关参数表 11-11。

表 11-11 探伤室探伤的相关参数表

探伤机型号	管电压	输出量H ₀ (mSv·m²/mA.h)	TVL(铅,mm)	TVL(混凝土, mm)	
XXH-2505周向型	250kV	834	2.9	90	

(5) 结果评价

表 11-12 探伤室有用线束剂量率相关参数一览表

序号	关注点	В	I (mA)	R (m)	$\begin{array}{c} H_0 \; (\; \mu Sv \cdot m^2 / \\ (\; mA \cdot h \;) \end{array}$	有用线束辐射屏 蔽结果(μSv/h)
1	探伤室西北侧防护墙 外 30cm 处	2.15E-07	5	3.15	8.34E+05	9.05E-02
2	探伤室东南侧防护墙 外 30cm 处	2.15E-07	5	3.15	8.34E+05	9.05E-02
3	3 探伤室顶部防护墙外 30cm 处(无建筑)		5	4.50	8.34E+05	7.40E+00

表 11-13 探伤室泄漏辐射剂量率相关参数一览表

			计算参数		计算结果
关注点	R	$H_{\rm L}$	TVL	X	H _{泄漏}
	(m)	(µSv/h)	(mm)	(mm)	(µSv/h)
探伤室西南侧墙外 30cm 处	5.90	5.0E+03	90 (混凝土)	600 (混凝土)	3.09E-05
探伤室东北侧墙外 30cm 处	5.90	5.0E+03	90 (混凝土)	600 (混凝土)	3.09E-05
探伤室防护门外 30cm 处	5.31	5.0E+03	2.9 (Pb)	14 (Pb)	2.64E-03
控制室防护门外 30cm 处	5.8	5.0E+03	2.9 (Pb)	14 (Pb)	2.21E-03

表 11-14 散射辐射剂量率相关参数一览表

				计算参	数		计算结果
关注点	Rs	I	$H_0(\mu Sv \cdot m^2 /$	$R_0^2/F \cdot \alpha$	TVL	X	H _{散射}
	(m)	(A)	(mA·h))	Κ0 /Γ'α	(mm)	(mm)	$(\mu Sv/h)$
探伤室西南侧墙外	5.90	5	5.24E±05	50	86 (混凝土)	600 (混凝土)	4.05E 01
30cm 处	3.90	3	5.34E+05	30	00(批鉄工)	000(化烘上)	4.05E-01
探伤室东北侧墙外	5.00	5	5.24E±05	50	86 (混凝土)	600(混凝土)	4.05E.01
30cm 处	5.90	3	5.34E+05	50	86(混凝土)	600 (混凝土)	4.05E-01

探伤室防护门外 30cm 处	5.31	5	5.34E+05	50	1.4 (Pb)	14 (Pb)	4.73E-04
控制室防护门外 30cm 处	5.8	5	5.34E+05	50	1.4 (Pb)	14 (Pb)	3.97E-04

表 11-15 各关注点剂量率(附加值)估算结果一览表

关注点	有用线束辐射剂量率 (μSv/h)	泄漏辐射 剂量率 (μSv/h)	散射辐射 剂量率 (μSv/h)	屋顶天空 反散射辐 射剂量率 (µSv/h)	总辐射剂 量率 (µSv/h)	导出剂量率 参考控制水 平,(μSv/h)
探伤室西南侧墙外 30cm 处	/	3.09E-05	4.05E-01	/	4.05E-01	2.5
探伤室西北侧防护 墙外 30cm 处	9.05E-02	/	/	/	9.05E-02	2.5
探伤室东北侧墙外 30cm 处	/	3.09E-05	4.05E-01	/	4.05E-01	2.5
探伤室东南侧防护 墙外 30cm 处	9.05E-02	/	/	/	9.05E-02	2.5
探伤室顶部防护墙 外 30cm 处(无建 筑)	7.40E+00	/	/	/	7.40E+00	100
探伤室防护门外 30cm 处	/	2.64E-03	4.73E-04	/	3.11E-03	2.5
控制室防护门外 30cm 处	/	2.21E-03	3.97E-04	/	2.61E-03	2.5
探伤室外地面 P 点	/	/	/	5.56E-08	5.56E-08	2.5

经计算, 探伤室周围各关注点处周围剂量当量率最大值为4.05E-01μSv/h, 探伤室顶部防护墙天空反散射周围剂量当量率为5.56E-08μSv/h, 满足《工业探伤放射防护标准》(GBZ 117-2022)中6.1.3 b)"屏蔽体外30cm处周围剂量当量率参考控制水平应不大于2.5μSv/h"的要求。

探伤室顶部防护墙周围剂量当量率为7.40E+00μSv/h,根据《工业探伤放射防护标准》(GBZ 117-2022)中6.1.4 b) 2)"对没有人员到达的探伤室顶,探伤室顶外表面 30cm处的周围剂量当量率参考控制水平通常可取100μSv/h。"的要求。本项目探伤室顶部无建筑,人员无法到达,本项目探伤室顶部防护可满足标准要求。

探伤室防护门外30cm处采用非有用线束辐射屏蔽计算,探伤室防护门防护可满足标准要求。

根据计算结果,本项目各关注点处均满足《工业探伤放射防护标准》(GBZ 117-2022)中的相应标准要求及本项目探伤室辐射屏蔽的剂量参考控制水平。因此,可满足标准要求。

2、工作人员和公众剂量估算及评价

(1) 估算公式

$$H_{E,r} = Dr \times t \times 10^{-3} (mSv)$$
 (11-15)

其中: H_{Er}——X、γ射线外照射人均年有效当量剂量, mSv/a;

Dr——X、 γ 射线辐射剂量率, μ Sv/h;

t——X、γ射线照射时间, h/a。

(2) 估算结果

1)辐射工作人员

本项目设 2 名专职操作人员,探伤作业时,探伤室辐射工作人员最大剂量取 9.05E-02μSv/h,本项目两台设备每周最大拍片量合计不超过 50 张, X 射线探伤机拍摄 每张片的出束(曝光)时间约 2min,一周训机 1 次, 1 次约 5min,一年按 50 周考虑,则计探伤机周出束时间约为 1.75h,年出束时间约为 87.5h。

辐射工作人员的剂量估算,计算结果见下表 11-16。

表 11-16 辐射工作人员剂量估算

序号	人员	附加剂量率	居留	出東时间	年受照剂量
万 与		$(\mu Sv/h)$	因子	(h/a)	(mSv/a)
1	辐射工作人员	9.05E-02	1	87.5	0.008

从表 11-16 计算结果可知,辐射工作人员受到的最大年剂量值为 0.008mSv/a,低于本评价管理目标值 5mSv/a,满足《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)的要求。

2)公众受照剂量估算

X射线探伤室附加剂量率按各关注点剂量估算结果计算。

公众的年受照剂量估算结果见表 11-17。

表 11-17 X 射线探伤机周围公众年受照剂量估算

名称	序号	位置	附加剂量率	居留因子	出東时间	年受照剂量
			(µSv/h)		(h/a)	(mSv/a)
	1	西南侧防护墙外	4.05E-01	1/8	87.5	4.43E-03
		30cm 处	4.05E-01			
探伤	•	西北侧防护墙外	0.05E.02	1	97.5	7.025.02
	2	9.05E-02 1	1	87.5	7.92E-03	
伤	3	东北侧防护墙外	4.050.01	1/8	87.5	4.43E-03
		30cm 处	4.05E-01			
	4	探伤室防护门外	3.11E-03	1/8	87.5	3.40E-05
		30cm 处	5.11E-03			

注:探伤室顶部人员无法进入,本次计算未对其进行公众的年受照剂量估算。

由表 11-17 可知,公众人员附加受照剂量最大值约为 7.92E-03mSv/a,小于本次评价设定的公众受照剂量约束值 0.1mSv/a。

11.2.3 废水的环境影响分析

本项目运行时不产生放射性废水。本项目不设置洗片室、评片室、暗室,底片只留 存电子版。故不涉及废显(定)影液。

(三) 营运期臭氧和氮氧化物环境影响分析

探伤室采用机械排风方式通风,探伤室设有 300mm×300mm 的排风口,拟安装了一台轴流风机,设计通风量为 1000m³/h,实际通风量按 80%的通风效率计算,该台轴流风机通风量为 800m³/h,探伤室排风换气次数可达 4.4 次/h。排风口位于探伤室后侧(即探伤室南侧),排风直接排入探伤室内,探伤室通过窗户自然通风,能保证探伤室每小时换气不小于 3 次的要求。

(四) 废水、固体废物环境影响分析

1、洗片废液

本项目不设置洗片室、评片室、暗室、底片只留存电子版。故不涉及洗片废液。

2、固体废物环境影响

本项目不设置洗片室、评片室、暗室,底片只留存电子版。故不涉及废胶片。现场 工作人员产生的生活垃圾集中收集后放置于厂区垃圾桶中,定期由环卫部门运至乌鲁木 齐头屯河区垃圾填埋场,不会对周围环境产生影响。

11.3 事故影响分析

辐射潜在事故风险及预防处理措施

本项目配置 X 射线探伤机 2 台, X 射线受开机和关机控制, 关机时没有射线发出, 因此, 断电状态下较为安全。在意外情况下, 可能出现的辐射事故(事件)如下:

(1)丧失屏蔽: X射线探伤机机头是用重金属屏蔽包围住的,因各种原因(如检修、调试、改变照射角度等)可能无意中将探伤机的屏蔽块、机架上的屏蔽物等移走,或随意加大照射野,使设备丧失自身屏蔽作用,导致相邻的屏蔽墙外出现高剂量率,人员受到不必要的照射。

安全措施: 检修、调试应由专业技术人员进行,绝不允许随便拆走探伤机及机架上的屏蔽材料,不允许加大照射面积。X 射线探伤室的防护屏蔽结构,包括四周屏蔽墙体、迷路、顶板和铅防护门,不得擅自改变、削弱,或破坏防护屏蔽结构,如开孔洞、挖沟、取土等。

(2) 人员滞留在探伤室内

原因分析:工作人员进入探伤室后未全部撤离,仍有人滞留在探伤室内某个不易察觉的地方,在开机前,未充分搜寻,从而人员意外地留了下来,因此受到大剂量照射。

安全措施:撤离探伤室时应清点人数,辐射工作人员用摄像头对探伤室内进行扫视,确认无人停留探伤室后开始进行操作。如遇人员滞留探伤室内,滞留人员应立即按下急停按钮,停止照射,如已受到大剂量照射,应立即送往医院就医。

(3) 警戒标志丧失

原因分析:警戒绳索、链条等意外断裂,警示灯等工作不正常而使公众人员误入监督区和控制区,造成误照射。

防范措施:加强对防护警示标识的检查,避免失效。

(4) 人员失误

原因分析:不了解探伤机的基本结构和性能,缺乏操作经验和缺乏防护知识,安全观念淡薄、无责任心;违反操作规程和有关规定,操作失误;管理不善、领导失察等,是人为的因素造成的辐射事故的最大原因。

安全措施:辐射工作人员必须加强专业知识学习,加强防护知识培训,避免犯常识性错误;加强职业道德修养,增强责任感,严格遵守操作规程和规章制度;管理人员应强化管理,落实监测频率,每年一次。保证按照要求进行探伤工作。

(5)设备丢失

原因分析:探伤机保管不善,可能发生丢失和被盗事故。

防范措施:安排专人负责探伤机的保管,在丢失后应及时报告相关部门,并积极配合调查取证。

(6) 空照

原因分析:根据上述分析可知,若在使用探伤机时发生空照,所需的控制区及监督区距离较远,若以上区域在未清场的情况下,会使人员受到误照射。

防治措施:为防止空照情况发生,摆放工件及操作控制由1名辐射工作人员负责, 另外的安排专人负责监督,禁止无关人员进入监督区。

(7) 发生辐射事故

原因分析:根据上述分析可知,发生以上辐射事故时,所需的控制区及监督区距离较远,若以上区域在未清场的情况下,会使人员受到误照射。

防治措施:应立即启动本单位的辐射事故应急预案,并在2小时内填写《辐射事故初始报告表》。事故后应对事故影响人员进行医学检查,确定其所受到的剂量水平,并在第一时间将事故通报环保、卫生等主管部门。

表 12 辐射安全管理

12.1辐射安全与环境保护管理机构的设置

12.1.1 放射防护管理领导小组

按照《放射性同位素与射线装置安全和防护条例》(国务院令第449号)等相关规定,公司应成立辐射防护管理的管理领导小组,名单与职责如下:

一、辐射安全管理领导小组成员名单

组长:

组员:

二、辐射安全管理领导小组岗位职责

- 1、组长职责
- (1)新疆八钢金属制品有限公司法人为本公司辐射防护管理的第一责任人,公司法人授权辐射防护领导小组组长代表法人全面负责新疆八钢金属制品有限公司 X 射线探伤工作场所辐射防护管理工作:
 - (2) 负责对 X 射线探伤工作场所安全防护工作和环境保护工作实施统一管理;
 - (3) 负责 X 射线探伤工作场所辐射防护队伍的建设:
 - (4) 负责指导副组长及小组成员实施辐射防护的日常监督管理工作;
- (5)制定并实施辐射事故应急预案,配合上级部门开展辐射事故的应急响应、调查处理和定级定性工作。
 - 2、副组长职责
- (1) 负责探伤机操作人员培训、体检、个人剂量监测、场所监测、X 射线探伤机台账、剂量仪表台账等档案管理;
- (2)组织从事射线工作人员学习国家颁发的相关法律法规,加强安全和辐射防护知识的培训学习,并进行考核,不合格者不得上岗;
 - (3) 负责监督检查各项辐射安全与环境保护工作管理制度的执行情况;
 - (4) 负责本公司全国核技术利用辐射安全申报系统的网上维护和日常管理;
- ①按照《放射性同位素与 X 射线探伤机安全许可证管理办法》要求,在规定时间内完成辐射安全许可证的申领、变更、延续、注销、重新申领等网上申报提交工作:
- ②及时对全国核技术利用辐射申报系统进行公司信息维护,包含设备变更、人员变更、信息录入等;

- (5)每年1月31日前通过全国核技术利用辐射申报系统上报公司《X射线探伤机的安全和防护状况年度评估》报告:
 - (6) 负责辐射工作的其他事务。

3、组员职责

- (1) 严格遵守公司辐射安全管理制度及操作规程,有效进行防护,防止发生辐射事故:
 - (2) 积极配合 X 射线探伤机安全防护工作和环境保护工作监督管理;
 - (3) 执行辐射事故应急方案,参加辐射事故应急培训和应急演练;
- (4)负责辐射场所的防护工作及个人、场所、环境监测,按有关规定上报防护监测数据或资料,并接受环保部门的监督和指导;
 - (5) 参加相关法律法规、安全和辐射防护知识培训,考核不合格者不得上岗。

12.1.2 辐射工作人员管理

实际工作中,不同电压探伤机的选取是由待检工件的厚度来决定的。本项目拟配备 2 名辐射工作人员,所有辐射工作人员在上岗前均应进行职业健康体检,均需配备个人 剂量卡,辐射工作人员均需通过辐射安全与防护考核等。辐射工作人员和管理人员均应 参加国家核技术利用辐射安全与防护培训平台放射性同位素与射线装置安全知识培训 班,并考试合格取得相应的证书。探伤机具体分组情况见表 12-1。

最大管电压 最大管电流 备注 工作组 名称 类别 数量 (kV)(mA)第一组 RTIS-225/HP II类 1 225 7 定向 第二组 RTIS-225/HP II类 1 225 7 定向

表 12-1X 射线探伤机分组情况

公司已有 4 人取得辐射安全与防护培训合格证书,其中 1 人为辐射安全管理人员,剩余 3 人为现场探伤工作人员。2 名工作人员操作一组探伤机,每班工作 7 小时,年工作 200 天。

12.2 辐射安全管理规章制度

该公司已制定《安全操作规程》、《放射人员安全管理制度》、《辐射防护和安全保卫制度》、《岗位职责》、《设备检修维护制度》、《职业健康管理规定》、《辐射工作人员培训制度及计划》、《射线装置使用登记制度》、《自行检查与年度评估制度》、《辐射事故应急预案》等一系列辐射安全管理制度,并要求严格执行。

12.2.1 操作规程

该公司已制定《现场探伤安全操作规程》,对现场探伤的各项步骤进行了详细阐述,确保探伤工作全过程在受控状态下进行。

12.2.2 岗位职责

该公司已制定《岗位职责》,规定相关人员的安全岗位职能,确保公司的安全责任落实到具体的人并能顺利实施。

12.2.3 辐射防护和安全保卫制度

该公司已制定《辐射防护和安全保卫制度》,明确该公司辐射安全防护的日常管理工作,要求辐射工作人员在岗时必须佩带个人剂量计及个人剂量报警仪等,定期接受个人剂量检测和职业健康体检,定期维护设备及防护设施,并建立探伤设备使用台账等各项记录文件。

12.2.4 设备检修维护制度

该公司已制定《辐射设备维护检修制度》,明确规定须定期对辐射装置、防护设备进行检查维护,做好检修记录。该公司应严格落实检修维护制度,建立检修维护记录。

12.2.5 人员培训制度

该公司已制定《辐射工作人员培训制度及计划》,要求从事辐射工作的管理人员和操作人员须参加辐射防护培训与考核,持证上岗,并规定取证后四年复训一次。

12.2.6 个人剂量及健康管理制度

该公司已制定《个人剂量检测计划、职业健康体检及管理规定》,要求所有从事或涉及辐射工作的探伤人员,必须每季度接受个人剂量检测,并建立个人剂量档案,每两年进行一次职业健康体检。检测记录应清晰、准确、完整并纳入档案进行保存,个人剂量档案应当保存至辐射工作人员年满七十五周岁,或者停止辐射工作三十年。

12.2.7 自行检查和评估制度

该公司已制定《辐射安全防护自行检查和评估制度》,要求本公司辐射安全领导小

组定期对本公司辐射工作人员执行国家法律法规和条例的情况进行监督检查,定期进行安全和防护知识教育培训和考核、个人剂量检测和职业健康检查,每年由辐射安全管理小组对本年度辐射安全防护工作进行年度评估,评估结果存档,发现安全隐患时及时上报,并限期整改,落实到人。

该公司必须于每年1月31日前向发证机关提交上一年度的评估报告。

综上所述,该公司辐射管理机构与制度文件满足《放射性同位素与射线装置安全和防护条例》、《放射性同位素与射线装置安全许可办法》和《放射性同位素与射线装置安全和防护管理办法》的要求,避免辐射事故的发生,确保探伤作业处于受控状态。

12.3 辐射监测

为了及时掌握项目周围的辐射水平,根据《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)、《辐射环境监测技术规范》(HJ 61-2021)、《工业探伤放射防护标准》(GBZ 117-2022)的要求,应建立必要的监测计划,包括设备运行期及个人剂量监测计划,要建立监测资料档案。

(1) 探伤室和周围环境监测计划

监测项目: X-γ辐射剂量率

监测频次:每年进行一次辐射水平监测,委托有资质的单位进行,并保存监测记录,每个季度进行自主监测一次,并保存好监测记录

监测点位:探伤室探伤时应考虑探伤室墙外 30cm 处和门缝四周、控制室,探伤室所在建筑四周。

(2) 个人监测

新疆八钢金属制品有限公司应委托有资质的单位定期对辐射工作人员的个人受照剂量进行例行检查并出具相关检测报告,个人剂量监测应遵照《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)、《职业性外照射个人监测规范》(GBZ 128-2019)等相关规定执行,个人剂量监测的监测周期一般为一个月,最长不应超过三个月;建立个人剂量档案和健康管理档案,做好工作人员的剂量数据登记和汇总工作,工作人员职业照射个人剂量监测档案应终生保存。当发现职业操作人员年有效剂量接近本评价建议的剂量约束值 5mSv/a 时,应立即停止该人员的辐射工作,分析和查找剂量接近剂量约束值的原因,并采取相应的整改措施。

(3)辐射工作人员健康管理

对公司辐射工作人员进行职业健康检查,体检结果合格方可上岗,每2年进行1次职业健康检查。

本项目拟配备 4 名辐射工作人员,均为参加环保部门组织的辐射安全与防护知识培训并取得合格证书的工作人员;均需配备个人剂量检测设备,并将其定期送检;均应进行职业健康体检,公司应对辐射工作人员建立职业健康档案并存档。

若后期公司业务量增大,需新增辐射工作人员,公司应组织新增的放射性工作人员 参加辐射安全与防护知识培训并取得合格证书,上岗前参加职业健康体检且合格才能从 事放射工作,每季度对辐射工作人员进行个人剂量监测。

	表 12-1 监测计划要求一览表					
场 所	监测 类别	监测 周期	监测项目	监测点位	剂量率控制水平	超标后处理方案
探	年度 监测	1 次/ 年		1、防护门外 30cm 处; 2、探伤室四周屏蔽体	四周墙体周围剂量 当量率不大于	及时查找原因,进
伤室探伤	季度 监测	1 次/ 季度	周围剂量 当量率	外表面 30cm 处; 3、操作位; 4、探伤室外需要关注 的人员常停留区域。	2.5μSv/h, 顶部周 围剂量当量率不大 于 100μSv/h。	行整改直至监测 符合要求。
	验收 监测	竣工 验收				10 日安小。
人 员	个人 剂量 监测	1 次/ 季度	个人剂量 当量	所有辐射工作人员。	辐射工作人员年 有效剂量管理目 标值不大于5mSv。	及时查找原因,并 采取相应的整改 措施。

12.4 辐射事故应急预案

辐射事故应急预案

为建立健全辐射事故应急机制,及时处置突发辐射事故,提高应急处置能力,最大程度地减少辐射事故及其可能造成的人员伤害和财产损失,公司已制定了《辐射事故应急预案》:

根据国家《放射性同位素与射线装置安全与防护条例》法律法规的要求,我单位现制定本辐射事故应急预案,确保在一旦发生辐射事故事件时,能迅速采取必要和有效的应急响应行动,保护工作人员、公众及环境的安全。

一、成立辐射事故应急领导小组及小组职责

机构组成:

组 长: (电话:)

组 员: (电话:)、(电话:)

职责:

- (1) 发生人员受超剂量照射事故,应启动本预案;
- (2) 事故发生后立即组织有关部门和人员进行事故应急处理;
- (3) 负责向生态环境及卫生行政部门及时报告事故情况;
- (4) 负责辐射事故应急处理具体方案的研究确定和组织实施工作。
- 二、辐射事故应急处理原则
- (1) 迅速报告原则;
- (2) 主动抢救原则;

- (3) 生命第一的原则;
- (4) 科学施救, 防止事故扩大的原则;
- (5) 保护现场, 收集证据的原则。
- 三、辐射事故应急处理程序
- a、发生事故后,立即启动辐射事故应急方案。发生一般事故后,立即封锁现场,迅速查明事故原因,凡能通过切断事故源等处理措施而消除事故的,则以自救为主;发生严重事故后,立即切断电源、封锁现场,迅速安排受照人员接受医学检查,在指定的医疗机构救治;核实事故情况,估算受照剂量、污染范围和程度,判定事故类型级别,提出控制措施和方案。
- b、发生辐射事故时,事故单位应当立即启动本单位的应急方案,采取必要的应急措施,在2小时内填写《辐射事故初始报告表》,向当地生态环境部门、公安部门和卫生主管部门报告。视事故具体情况,向上级相关管理部门报告。
- c、定期进行事故应急演练,对演练效果作出评价,提交演练报告,详细说明演练过程中发现的问题,列出不符合项,进行整改。

新疆维吾尔自治区生态环境厅电话:

乌鲁木齐生态环境局电话:

乌鲁木齐市卫生健康委员会:

公安局电话:

医院急救中心: (急救中心)

12.5 与相关法规文件的符合情况

本报告对新疆八钢金属制品有限公司就《放射性同位素与射线装置安全许可办法》、《放射性同位素与射线装置安全和防护管理办法》的符合情况进行了对比,对照结果如下表 12-2 和 12-3。

本次为该公司首次申报核技术利用建设项目,在取得本项目环评批复文件后,公司应按照相关法规要求办理辐射安全许可证,在取得辐射安全许可证后方可购买探伤机。

表 12-2 本项目与《放射性同位素与射线装置安全许可办法》的对照结果

《放射性同位素与射线装置安全许可办法》	本项目情况	备注
使用II类射线装置的,应当设有专门的辐射安全与环境保护管理机构,或者至少有1名具有本科以上学历的技术人员专职负责辐射安全与环境保护管理工作。 从事辐射工作的人员必须通过辐射安全和防护专业知识及相关法律法	公司成立的辐射安全领导小组主要 负责射线装置的安全和防护工作,以 确保射线装置的安全运行。 公司已安排 4 名辐射工作人员参加 辐射安全与防护培训,并取得合格证	建设单位应在申请辐
规的培训和考核。	书。 公司拟在探伤工作现场设置明显的	射安全 许可证 前落实
射线装置使用场所有防止误操作、防止工作人员和公众受到意外照射的安全措施。	警告牌、警示灯及警戒线,辐射工作人员应配备个人剂量计、个人剂量报警仪、便携式辐射监测仪等防护用品,并确保各项辐射安全防护措施能正常运行。	各项辐射安全 防护措施和管
配备与辐射类型与辐射水平相适应 的防护用品和监测仪器,包括个人剂 量测量报警、辐射监测等仪器。使用 非密封放射性物质的单位还应当有 表面污染监测仪。	该公司配备便携式 X-γ辐射监测仪, 为现场探伤的每位人员配备个人剂 量报警仪,拟为每位辐射工作人员配 备1枚个人剂量计,并每季度送有资 质单位检测。	理制度

该公司已制定《安全操作规程》、《放 射人员安全管理制度》、《辐射防护 和安全保卫制度》、《岗位职责》、 有健全的操作规程、岗位职责、辐射 《监测计划》、《设备检修维护制度》、 防护和安全保卫制度、设备检修维护|《职业健康管理规定》、《辐射工作 制度、放射性同位素使用登记制度、人员培训制度及计划》、《射线装置 人员培训方案、监测方案等。 使用登记制度》、《自行检查与年度 评估制度》、《辐射事故应急预案》 等一系列辐射安全管理制度,并要求 严格执行。 辐射工作单位应当编写射线装置安 | 公司拟编写射线装置安全和防护状 全和防护状况年度评估报告,于每年 | 况年度评估报告,并于每年 1 月 31 1月31日前报原发证机关。 日前报原发证机关。 有辐射事故应急措施 公司已制定《辐射事故应急预案》

表 12-3 本项目与《放射性同位素与射线装置安全和防护管理办法》的对照结果

《放射性同位素与射线装置安全和防 护管理办法》	本项目情况	备注
第九条:生产、销售、使用放射性同位 素与射线装置的单位,应当按照国家环 境监测规范,对相关场所进行辐射监 测,并对监测数据的真实性、可靠性负 责;不具备自行监测能力的,可以委托 经省级人民政府环境保护主管部门认 定的环境监测机构进行监测。	公司拟配备便携式 X-γ辐射监测 仪,拟用于日常自行监测,并每年 委托有资质单位对辐射工作场所 周边环境进行一次监测。	建设单位应在竣保护验收的工程,
第十二条:生产、销售、使用放射性同位素与射线装置的单位,应当对本单位的放射性同位素与射线装置的安全和防护状况进行年度评估,并于每年1月31日前向发证机关提交上一年度的评估报告。	公司拟在每年年底编制年度评估 报告,并在1月31日前提交。	项辐射 安全防 护措施 和管理 制度

第十七条:生产、销售、使用放射性同位素与射线装置的单位,应当按照环境保护部审定的辐射安全培训和考试大纲,对直接从事生产、销售、使用活动的操作人员以及辐射防护负责人进行辐射安全培训,并进行考核;考核不合格的,不得上岗。

公司已安排 4 名辐射工作人员参加辐射安全与防护培训,并取得合格证书。

第二十三条:生产、销售、使用放射性 同位素与射线装置的单位,应当按照法 律、行政法规以及国家环境保护和职业 卫生标准,对本单位的辐射工作人员进 行个人剂量监测;发现个人剂量监测结 果异常的,应当立即核实和调查,并将 有关情况及时报告辐射安全许可证发 证机关。

公司拟为每位辐射工作人员配备 1 枚个人剂量计,并每季度送有资质 单位检测,拟每两年安排全部辐射 工作人员进行 1 次职业健康体检。

12.6 竣工环境保护验收要求

根据《建设项目竣工环境保护验收暂行办法》,建设单位应当按照办法规定的程序和标准,组织对配套建设的环境保护设施进行验收,确保建设项目需要配套建设的环境保护设施与主体工程同时投产或者使用。建设项目验收内容和要求见表 12-4。

表 12-4 建设项目竣工验收一览表

序号	验收内容	验收要求	参考标准
1	环保文件	项目建设的环境影响评价文件、环评批复、 有资质单位出具验收监测报告。	《关于发布<建设项目竣工环 境保护验收暂行办法>的 公告》
2	环境管理制 度、应急措 施	成立专门的辐射领导机构,制定相应的规章制度和事故应急预案,具有可操作性,有相 应的操作规程、各类制度上墙。	《放射性同位素与射线装置 安全和防护管理办法》、《放 射性同位素与射线装置安全 许可管理办法》、《关于建立 放射性同位素与射线装置辐 射事故分级处理和报告制度 的通知》

3	辐射工作人 员管理	1、本项目辐射工作人员应具备相应的岗位 技能; 2、公司应每季度对工作人员进行个人剂量 监测,每2年进行放射人员健康体检,并将 资料存档管理; 3、管理人员和辐射工作人员参加辐射安全 知识培训,5年进行一次复训。	《放射工作人员职业健康 管理办法》
4	防护用品	防护监测设备和防护用品按报告表中表 10-2 要求落实。	GBZ 117-2022 GB 18871-2002 GBZ/T 250-2014
5	辐射屏蔽设 计及安全防 护措施	1、探伤室外 30cm 处最高周围剂量当量率 参考控制水平不大于 2.5μSv/h。 2、警示标志、工作状态指示灯设置位置合理,正常工作;门机联锁、紧急停机开关等正常运行;视频监控设备正常运行。	GBZ 117-2022 GB 18871-2002 GBZ/T 250-2014
6	辐射监测	①每季度对工作场所周围环境进行常规自主监测,每年委托有资质的单位进行年度监测并出具年度评估报告。②配备相应的自检设备,防护检查仪器及人员,定时进行辐射工作人员个人剂量监测。	《放射性同位素与射线装置 安全和防护条例》
7	剂量限值	①辐射工作人员年有效剂量管理目标值为 5mSv; ②公众成员年有效剂量管理目标值 不超过 0.1mSv。	GB 18871-2002 及环评批复
8	危险废物 处理	项目投入使用前需要和有相应危险废物处 理资质的单位签订危险废物处置委托协议。	本项目不涉及洗片

该项目申请竣工环保验收时,该公司应委托有资质单位对探伤场所屏蔽防护能力进 行检测,并出具检测报告。

表 13 结论与建议

13.1 结论

(一) 项目基本情况

新疆八钢金属制品有限公司成立于 2003 年 9 月 24 日,总部位于新疆乌鲁木齐市头屯河区工业园,是新疆八一钢铁股份有限公司的全资子公司,隶属于中国宝武钢铁集团。公司法定代表人为 , 主要从事汽车配件、农机配件、金属制品、钢管、钢材加工、进出口经营等业务。截至 2023 年,公司员工数量为 126 人,2020 年营业收入达 9.72 亿元。公司迁移 2 台 X 射线探伤机,目前已取得辐射安全与防护培训合格证书的有 4 人。

本项目建设地点位于新疆维吾尔自治区乌鲁木齐市头屯河区北站公路 1366 号新疆 八钢金属制品有限公司焊一车间内,公司拟新建一座 X 射线探伤室,并迁移 2 台 X 射 线探伤机(RTIS-225/HP 定向探伤机 2 台)在专用探伤室内开展无损检测工作。

新疆八钢金属制品有限公司工业 X 射线探伤工作场所项目应进行辐射环境影响评价,根据《建设项目环境影响评价分类管理名录(2021 年版)》(生态环境部令 第 16 号),本项目属于名录中"五十五、核与辐射"第 172 条"核技术利用建设项目"中"使用II 类射线装置",应编制环境影响报告表。因此,新疆八钢金属制品有限公司委托新疆朗新天环保科技有限公司对该项目进行辐射环境影响评价。

(二)辐射安全与防护综合结论

- (1) 根据现场检测,本项目场址的辐射本底水平属于乌鲁木齐市正常本底范围。
- (2)本项目所产生的主要污染因子是电离辐射危害因子(X射线),一般污染因子(臭氧和氮氧化物等有害气体)。
- (3)本项目辐射工作场所分为监督区和控制区:探伤室为控制区、探伤室外的其他区域以及控制室为监督区,该项目整体布局较合理,分区明确。项目采取了相应的屏蔽措施和其它防护措施,辐射屏蔽设计合理,能满足辐射防护要求。
- (4) 探伤室设置警示与监视、急停、门机联锁系统等辐射安全措施,符合"故障-安全"原则,具有多层次的纵深防御体系。

(三)辐射环境影响分析结论

(1)根据预测估算,探伤室各关注点剂量当量率均小于 2.5μSv/h,能够满足 GBZ 117-2022《工业探伤放射防护标准》中相应的要求及本项目探伤室辐射屏蔽的剂量参考控制水平。

(2)根据估算得出,如果室内探伤及室外探伤为一名辐射工作人员完成所有的工作,则工作人员受到的最大年剂量值为 0.008mSv/a,公众附加受照剂量约为最大值为 7.92E-03mSv/a,符合《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)中关于"剂量限值"的要求,同时也满足本项目设定的个人剂量管理目标值的要求。

通过核算,从事本项目的辐射工作人员和公众人员的年附加有效剂量均满足本环评的年有效剂量管理目标值要求,符合《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)和《工业探伤放射防护标准》(GBZ 117-2022)相关标准的要求。

(四) 排放环境影响分析结论

- (1)施工期:本项目施工期主要的排放影响污染因子有:噪声、扬尘、固体废物,本项目工程量小且均在厂区内进行,施工期为3个月,施工期短,影响是暂时的,随着探伤室建设的完成,影响也将消失。通过采取相应的防治措施后,对外界的影响小。
- (2) 营运期:本项目不设置洗片室、评片室、暗室,底片只留存电子版。现场工作人员产生的生活垃圾集中收集后放置于就近垃圾箱中,不会对周围环境产生影响。

(五)产业政策符合性分析结论

根据《产业结构调整指导目录(2021年本》,本项目使用的探伤设备属于鼓励类"十四、机械中的6、工业CT、三维超声波探伤仪等无损检测设备",本项目符合国家产业政策。

本项目 X 射线探伤室四周防护墙屏蔽为 600mm 混凝土, 顶板为 400mm 混凝土, 探伤室防护门为 14mmPb, 控制室防护门为 14mmPb。经估算可得出本项目职业人员和公众受照年有效剂量符合本报告提到的年有效剂量管理目标值的要求, 低于 GB 18871-2002 规定的剂量限值。

(六) 实践的正当性

本项目的建设有利于提高和保证公司产品质量,符合实践正当性,具有明显的经济效益和社会效益。项目总投资与环保投资的比例,与同类项目环保投资指标进行比较,环保投资比例合理、适当,可保证环保措施的落实。根据报告分析,本项目采取辐射防护措施,保证探伤室外剂量率和人员受照水平控制在标准范围内。因此,从该项目的代价和利益方面分析,项目具有明显的经济效益、社会效益,该项目的建设符合实践正当性。

(七) 选址合理性分析

本项目探伤机工作室位于新疆八钢金属制品有限公司焊一车间内。

本项目不设置洗片室、评片室、暗室,底片只留存电子版。未开展探伤工作期间,X 射线探伤机存放于贮存室内。探伤机工作室周围 50 米范围内,无居民区、学校等敏感建筑。因此选址从环境的角度是合理的。

(八) 总结论

新疆八钢金属制品有限公司工业 X 射线探伤工作场所项目满足"实践的正当性"的原则与要求,符合国家产业政策;项目选址和布局合理可行;项目涉及的探伤室屏蔽设计满足标准要求,采取的辐射安全防护措施可行;公司在采取本环评提出的各项辐射防护及污染防治措施后,对周围环境产生的辐射影响较小,且符合环境保护的要求。从环境保护的角度来看,本环评认为该建设项目是可行的。

13.2 建议

- 1、按照自治区生态环境厅《关于在全区实施高风险移动放射源在线监控管理工作的通知》(新环办发〔2018〕363号)要求,建立放射源实时在线监控系统,并与生态环境保护主管部门的监控平台联网,保证监控设备正常运行和信息传输。
- 2、建设单位使用探伤机工作时应严格按照操作规程操作,存放时应做到双人双锁,由专人管理等防盗措施。
- 3、认真学习国家环保法规政策,提高安全文化素养,增强辐射防护意识;要求工作人员严格执行各项安全管理规章制度和安全技术操作规程。
- 4、建设单位须严格执行辐射污染防护与辐射环境管理的法律法规,认真落实本报告中提出的各项辐射防护措施和本报告批复文件中的各项措施。加强对辐射设备的管理,在工作期间必须有专人管理。
- 5、建设单位要定期检查辐射设备的辐射防护设施,发现问题及时解决,杜绝辐射 事故的发生。
- 6、本项目在取得环评批复后须进行项目竣工环境保护验收,通过验收后方可正式运行。

表 14 审批

下一级环保部门预审意见	
	公章
	ム平
经办人: 年月日	
审批意见	
	ملب
	公章
经办人: 年月日	